Skip to main navigation menu Skip to main content Skip to site footer

Morphological characterization and hierarchical classification of 40 bush pea genotypes (Pisum sativum L.)

Supporting Agencies
Universidad de Nariño, Minciencias of Colombia

Sample of the variability of shape, color and size of bush pea seed from the collection of the Universidad de Nariño (Colombia). Photo: O. Checa-Coral

Abstract

The Universidad de Nariño is home to a collection of bush pea plantlets that are a source of biodiversity for the genetic improvement of pea species in Colombia. The characterization of these accessions is required to identify genotypes with attributes that could be used in the search for new varieties. For the morphological characterization, 40 pea accessions were planted in Pasto, Colombia. 23 quantitative variables and 12 qualitative variables were documented, descriptors proposed for this species by the European Union in 2003. The data were subjected to Principal Component Analysis and Multiple Correspondence Analysis. Finally, a hierarchical classification method was applied using Ward’s method. The first four components, which explained 78.80% of the total variability of the population, were selected for the quantitative variables. Four groups were identified. Genotypes with the afila gene, which are of interest for pea breeding programs, were found in groups 1 and 2. The highest seed weight was in group 1, and the genotypes with the best reaction to powdery mildew were in group four. For the qualitative variables, the first six factors, which described 60.51% of the variability, were selected, and the hierarchical classification analysis resulted in five groups. The qualitative characteristics that contributed more to the differentiation of the groups included leaflet type, hilum color, degree of curvature of the pod, color and shape of the grain.

Keywords

Grain legumes, Biological collections, Selection, Classification, Principal component analysis, Multiple correspondence analysis, Variability

PDF

References

Abubakkar, M., N. Nobel, A. Ali, M. Ashraf, S. Niaz, and K. Mahmood. 2011. Characterization of pea germplasm. Int. J. Veg. Sci. 17(3), 246-258. Doi: 10.1080/19315260.2010.544380

Ali, Z., A. Qureshi, W. Ali, H. Gulzar, M. Nisar, and A. Ghafoor. 2007. Evaluation of genetic diversity present in pea (Pisum sativum L.) germplasm base on morphological traits, resistance to powdery Mildew and molecular characteristics. Pak. J. Bot. 39(7), 27-39.

Amin, A., F. Mushtaq, P.K. Singh, K.P. Wani, S. Spaldon, and N. Nazir. 2010. Genetics and breeding of pea. Int. J. Curr. Res. 10, 028-034.

Bhuvaneswari, S., S.K. Sharma, P. Punitha, K.S. Shashidhar, K.L. Naveenkumar, and N. Prakash. 2017. Evaluation of morphological diversity of field pea [Pisum sativum subsp. arvense (L.)] germplasm under sub-tropical climate of Manipur. Legume Res. 40, 215-223. Doi: 10.18805/lr.v0iOF.10756

Bouhadida, M., F. Srarfi, I. Saadi, and M. Kharrat. 2013. Molecular characterization of pea (Pisum sativum L.) using microsatellite markers. J. Appl. Chem. 5(1), 57-61. Doi: 10.9790/5736-0515761


Brijendra, K., K. Adesh., K. Ashutosh, and L. Roopa. 2013. Selection strategy for seed yield and maturity in field pea (Pisum sativum L. arvense). Afr. J. Agric. Res. 8(44), 5411-5415.

Buitrago, J. and C. Duarte. 2006. El cultivo de arveja en Colombia. Fondo Nacional de Leguminosas, Bogota.

Checa, O. and M. Rodríguez. 2015. Resistencia a oídio (Erysiphe polygoni) y rendimiento en arveja afila (Pisum sativum L.). Temas Agrarios 20(2), 58-71. Doi: 10.21897/rta.v20i2.759

Checa, O.E., M. Rodriguez, X. Wu, and M.W. Blair. 2020. Introgression of the Afila gene into climbing garden pea (Pisum sativum L.). Agronomy 10, 1537. Doi: 10.3390/agronomy10101537

Espósito, M., E. Martin, V. Cravero, and E. Cointry. 2007. Characterization of pea accessions by SRAP´s markers. Sci. Hortic. 113(4), 329-335, Doi: 10.1016/j.scienta.2007.04.006

European Union. 2003. Protocol for distinctness, uniformity and stability tests Pisum sativum L. Sensu lato, PEA, European Union Community Plant Variety Office, Brussels.

Gatti, I., M.A. Espósito, P. Almirón, V.P Cravero, and E.L. Cointry. 2011. Diversity of pea (Pisum sativum) accessions based on morphological data for sustainable field pea breeding in Argentina. Genet. Mol. Res. 10(4), 3403-3410. Doi: 10.4238/2011.October.31.8

Gixhari, B., H. Vrapi, and V. Hobdari. 2014. Morphological characterization of pea (Pisum sativum L.) genotypes stored in Albanian genebank. In: First International Conference “Biotechnology in Agriculture”. Agricultural University of Tirana, Tirana.

Gupta, K., R. Waldia, B. Dahiya, K. Singh, and D. Sood. 1984. Inheritance of seed yield and quality traits in peas (Pisum sativum L.). Theor. Appl. Genet. 69(2), 133-137. Doi: 10.1007/BF00272884

Hanci, F. and E. Cebeci. 2018. Determination of morphological variability of different Pisum genotypes using principal component analysis. Legume Res. 42(2), 162-165. Doi: 10.18805/LR-438

Iqbal, A., S. Shah, M. Nisar, and A. Ghafoor. 2017. Morphological characterization and selection for high yielding and powdery mildew resistant pea (Pisum sativum) lines. Sains Malays. 46(10), 1727-1734. Doi: 10.17576/jsm-2017-4610-08

Jannink, J., M. Liebman, and L. Merrick. 1996. Biomass production and nitrogen accumulation in pea, oat and vetch green manure mixtures. Agron. J. 88(2), 231-240. Doi: 10.2134/agronj1996.00021962008800020019x

Kumar, M., M.S. Jeberson, N.B Singh, and R. Sharma. 2017. Genetic analysis of seed yield and its contributing traits and pattern of their inheritance in field pea (Pisum sativum L). Int. J. Curr. Microbiol. Appl. Sci. 6, 172-181. Doi: 10.20546/ijcmas.2017.606.021

León, D., Ó. Checa, and P. Obando. 2020. Inheritance of resistance of two pea lines to powdery mildew. Agron. J. 112(4), 2466-2471. Doi: 10.1002/agj2.20253

Ma, Y., C.J. Coyne, M.A. Grusak, M. Mazourek, P. Cheng, D. Main, and R.J. McGee. 2017. Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.). BMC Plant Biol. 17(43), 1-17. Doi: 10.1186/s12870-016-0956-4

Mallu, T.S., S.G. Mwangi, A.B. Nyende, N.V.P.R.G. Rao, D.A. Odeny, A. Rathore, and A. Kumar. 2014. Assessment of genetic variation and heritability of agronomic traits in chickpea (Cicer arietinum L.). Int. J. Agron. Agric. Res. 5(4), 76-88.

Mihailovic, V. 2008. Componentes de rendimiento de grano afila (af) líneas de guisantes forrajeros (Pisum sativum L.). Instituto de Cultivos y Hortalizas, NoviSad, Serbia.

Nag, U.K. and C.P. Khare. 2017. Epidemiological studies on powdery mildew of vegetable pea. Plant Arch. 17(1), 171-176.

Nisar, M., A. Ghafoor, M.R. Khan, and A.S. Qureshi. 2006. Screening of Pisum sativum L. germplasm against Erysiphe pisi Syd. Acta Biol. Crac. Ser. Bot. 48(2), 33-37.

Santos, C.S., B. Carbas, A. Castanho, M.W. Vasconcelos, M.C. Vaz Patto, C. Domoney, and C. Brites. 2019. Variation in pea (pisum sativum l.) seed quality traits defined by physicochemical functional properties. Foods 8(11), 570. Doi: 10.3390/foods8110570

Sharma, R.L., T. Mishra, R. Bhagat, and V.K. Swarnkar. 2017. Comparative efficacy of different new fungicides against powdery mildew disease of field pea (Pisum sativum L.). Int. J. Curr. Microb. Appl. Sci. 6(4), 1349-1360.

Singh, B., T. Chaubey, D. Upadhyay, A. Jha, and S. Pandey. 2014. Morphological characterization of vegetable pea (Pisum sativum L. spp. hortense) genotypes and their application for distinctiveness, uniformity and stability testing. Indian Legum. Res. 37(5), 547-551. Doi: 10.5958/0976-0571.2014.00674.2

Singh, M., H. Upadhyaya, and I. Bisht. 2013. Genetic and genomic resources of grain legume improvement. Elsevier, London.

Singh, S.R., N. Ahmed, D.B. Singh, K.K. Srivastva, R.K. Singh, and A. Mir. 2017. Genetic variability determination in garden pea (Pisum sativum L. sub sp. hortense Asch. and Graebn). by using the multivariate analysis. Legum. Res. 40, 416-422.

Smýkal, P., C. Coyne, M. Ambrose, N. Maxted, H. Schaefer, and M. Blair. 2014. Legume crops phylogeny and genetic diversity for science and breeding. Crit. Rev. Plant Sci. 34, 43-104. Doi: 10.1080/07352689.2014.897904

Smýkal, P., C. Coyne, R. Redden, and N. Maxted. 2013. Peas. In: Singh, M., H.D. Upadhyaya, and I.S. Bisht (eds.). Genetic and genomic resources of grain legume improvement. Elsevier, Amsterdam. Doi: 10.1016/B978-0-12-397935-3.00003-7

Smýkal, P., G. Kenicer, A.J. Flavell, J. Corander, O. Kosterin, and R.J. Redden. 2011. Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genet. Res. 9, 4-18. Doi: 10.1017/S147926211000033X

Tiemerman, G., A. Mills, C. Whitfield, T. Frew, R. Butler, and S. Murray. 2005. Linkage mapping of QTLs for seed yield, yield components and developmental traits in pea (Pisum sativum L.). In: 4th International Crop Science Congress 45(4), 1336-1344. Doi: 10.2135/cropsci2004.0436

Tiwari, G. and G.R. Lavanya. 2012. Genetic variability, character association and component analysis in F4 generation of fieldpea (Pisum sativum var. arvense L.). Karn. J. Agric. Sci. 25, 173-175.

Trněný, O., J. Brus, I. Hradilová, A. Rathore, R. Roma, and P. Kopecký. 2018. Molecular evidence for two domestication events in the pea crop. Genes 9(11), 535. Doi: 10.3390/genes9110535

UPOV, Union Internationale pour la Protection des Obtentions Vegetales. 2003. Protocol for distinctness, uniformity and stability tests: peas (Pisum sativum L. sensu lato). CPVO-TP/007/1 Final. European Union, Genova.

Warkentin, T., P. Smýkal, C. Coyne, N. Weeswn, C. Domoney, D.-J. Bing, A. Leonforte, Z. Xuxiao, G.P. Dixit, L. Boros, K.E. McPhee, R.J. McGee, J. Burstin, and T. Ellis. 2015. Pea. In: De Ron, A. (ed.) Grain legumes. Handbook of plant breeding. Vol. 10. Springer, New York, NY. Doi: 10.1007/978-1-4939-2797-5_2

Wang, F., J. Fu, L. Dong, and Y. Zhu. 2003. Tendril inheritance in semi-leafless pea and its utilization in breeding. Yi Chuan Hereditas 25(2), 185-188.

Wu, X., N. Li, J. Hao, J. Hu, X. Zhang, and M. Blair. 2017. Genetic diversity of chinese and global pea (Pisum sativum L.) collections. Crop Sci. 57, 1574-1584. Doi: 10.2135/cropsci2016.04.0271

Downloads

Download data is not yet available.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.