Skip to main navigation menu Skip to main content Skip to site footer

Molecular characterization using SSR markers in 50 shrub pea genotypes (Pisum sativum L.) from the GRICAND Collection, Colombia

Shrubby pea crop (Pisum sativum L.) with Afila gene in Nariño (Colombia).  Photo: D. Herrera, GRICAND

Abstract

The pea (Pisum sativum L.) is one of the more important legume crops produced globally. We studied the structure and genetic diversity in a collection of 50 pea accessions with 16 simple sequence repeat (SSR) markers, whose average polymorphic information content (PIC) was 0.62. The SSR markers amplified a total of 28 alleles with an average of 4 alleles per locus, with locus AB71 and D21 amplifying the largest number of alleles (6). The observed heterozygosity (Ho) was 0.09±0.08 and the expected heterozygosity (He) was 0.42, indicating an elevated level of inbreeding (Fis = 0.60). The genetic relationships were inferred with a similarity index (DICE) and a bayesian analysis (STRUCTURE), detecting 2 clusters for the genotypes, with a high similarity of the morphological characteristics of each genotype. The results of this study will be useful for the creation of future breeding programs.The pea (Pisum sativum L.) is one of the more important legume crops produced globally. We studied the structure and genetic diversity in a collection of 50 pea accessions with 16 simple sequence repeat (SSR) markers, whose average polymorphic information content (PIC) was 0.62. The SSR markers amplified a total of 28 alleles with an average of 4 alleles per locus, with locus AB71 and D21 amplifying the largest number of alleles (6). The observed heterozygosity (Ho) was 0.09±0.08 and the expected heterozygosity (He) was 0.42, indicating an elevated level of inbreeding (Fis = 0.60). The genetic relationships were inferred with a similarity index (DICE) and a bayesian analysis (STRUCTURE), detecting 2 clusters for the genotypes, with a high similarity of the morphological characteristics of each genotype. The results of this study will be useful for the creation of future breeding programs.

Keywords

Genetic diversity, Genetic structure, Pre-breeding, SSR markers, Grain legumes, Plant habit

PDF

References

Ahmad, S., M. Singh, N.D. Lamb-Palmer, M. Lefsrud, and J. Singh. 2012. Assessment of genetic diversity in 35 Pisum sativum accessions using microsatellite markers. Can. J. Plant Sci. 92(6), 1075-1081. Doi: 10.4141/cjps2011-261

Ali, Z., A.S. Qureshi, W. Ali, H. Gulzar, M. Nisar, and A. Ghafoor. 2007. Evaluation of genetic diversity present in pea (Pisum sativum L.) germplasm based on morphological traits, resistance to powdery mildew and molecular characteristics. Pak. J. Bot. 39(7), 2739-2747.

Amarakoon, D., D. Thavarajah, K. McPhee, and P. Thavarajah. 2012. Iron-, zinc-, and magnesium-rich field peas (Pisum sativum L.) with naturally low phytic acid: a potential food-based solution to global micronutrient malnutrition. J. Food Comp. Anal. 27(1), 8-13. Doi: 10.1016/j.jfca.2012.05.007

Botstein, D., R.L. White, M. Skolnick, and R.W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32(3), 314-331.

Checa-Coral, O.E., J.E. Bastidas-Acosta, and O.C. Narváez-Taimal. 2017. Evaluación agronómica y económica de arveja arbustiva (Pisum sativum L.) en diferentes épocas de siembra y sistemas de tutorado. Rev. U.D.C.A Act. & Div. Cient. 20(2), 279-288. Doi: 10.31910/rudca.v20.n2.2017.380

Checa-Coral, O. and M. Rodriguez. 2015. Resistencia a oídio (Erysiphe polygoni) y rendimiento en arveja afila (Pisum sativum L.). Temas Agrarios 20(2), 58-71. Doi: 10.21897/rta.v20i2.759

Cieslarová, J., P. Hanáček, E. Fialová, M. Hýbl, and P. Smýkal. 2011. Estimation of pea (Pisum sativum L.) microsatellite mutation rate based on pedigree and single-seed descent analyses. J. Appl. Genet. 52(391), 391-401. Doi: 10.1007/s13353-011-0058-9

Cupic, T., M. Tucak, S. Popovic, S. Bolaric, S. Grljusic, and V. Kozumplik. 2009. Genetic diversity of pea (Pisum sativum L.) genotypes assessed by pedigree, morphological and molecular data. J. Food Agric. Environ. 7(3-4), 343-348.

Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14(8), 2611-2620. Doi: 10.1111/j.1365-294X.2005.02553.x

Excoffier, L. and H.E.L. Lischer. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resourc. 10(3), 564-567. Doi: 10.1111/j.1755-0998.2010.02847.x

Falush, D., M. Stephens, and J.K. Pritchard. 2000. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol. Ecol. Notes 7(4), 574-578. Doi: 10.1111/j.1471-8286.2007.01758.x

Ghafoor, A., Z. Ahmad, and R. Anwar. 2005. Genetic diversity in Pisum sativum and a strategy for indigenous biodiversity conservation. Pak. J. Bot. 37(1), 71-77.

Hamon, C., A. Baranger, C.J. Coyne, R.J. McGee, I. Le Goff, V. L’Anthoëne, R. Esnault, J.-P. Rivière, A. Klein, P. Mangin, K.E. McPhee, M. Roux-Duparque, L. Porter, H. Miteul, A. Lesné, G. Morin, C. Onfroy, A. Moussart, B. Tivoli, R. Delourme, and M.-L. Pilet-Nayel. 2011. New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple French and American environments. Theor. Appl. Genet. 123 261-281. Doi: 10.1007/s00122-011-1582-z

Handerson, C., S.K. Noren, T. Wricha, N.T. Meetei, V.K. Khanna, A. Pattanayak, S. Datt, P.R. Choudhury, and M. Kumar. 2014. Assessment of genetic diversity in pea (Pisum sativum L.) using morphological and molecular markers. Indian J. Genet. Plant Breed. 74(2), 205-212. Doi: 10.5958/0975-6906.2014.00157.6

Jing, R., M.A. Ambrose, M.R. Knox, P. Smykal, M. Hybl, Á. Ramos, C. Caminero, J. Burstin, G. Duc, L.J.M. van Soest, W.K. Święcicki, M.G. Pereira, M. Vishnyakova, G.F. Davenport, A.J. Flavell, and T.H.N. Ellis. 2012. Genetic diversity in European Pisum germplasm collections. Theor. Appl. Genet. 125(2), 367-380. Doi: 10.1007/s00122-012-1839-1

Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Meintjes, and A. Drummond. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 78(12), 1647-1649. Doi: 10.1093/bioinformatics/bts199

Kosterin, O.E. and V.S. Bogdanova. 2014. Efficiency of hand pollination in different pea (Pisum) species and subspecies. Indian J. Genet. Plant Breed. 74(1), 50-55. Doi: 10.5958/j.0975-6906.74.1.007

Loridon, K., K. McPhee, J. Morin, P. Dubreuil, M.L. Pilet-Nayel, G. Aubert, C. Rameau, A. Baranger, C. Coyne, I. Lejeune-Hènaut, and J. Burstin. 2005. Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor. Appl. Genet. 111(6), 1022-1031. Doi: 10.1007/s00122-005-0014-3

Mike, A. 2008. Garden pea. pp. 3-26. In: Prohens, J. and F. Nuez (eds.). Handbook of plant breeding. Vol. 2: Vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umelliferae. Springer, New York, NY. Doi: 10.1007/978-0-387-74110-9_1

Naeem, S., S. Ahmad, M. Hassan, M. Adil, M.A. Younis, M. Azeem, and M. Ibrahim. 2018. Role of pollinators in pea (Pisum sativum) yield at Peshawar valley. J. Entomol. Zool. Stud. 6(2), 1280-1282.

Nasiri, J., A. Haghnazari, and J. Saba. 2009. Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on SSR markers. Afr. J. Biotech. 8(15), 3405-3417.

Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70(12), 3321-3323. Doi: 10.1073/pnas.70.12.3321

Nisar, M., A. Khan, S.F. Wadood, A.A. Shah, and F. Hanci. 2017. Molecular characterization of edible pea through EST-SSR markers. Turk. J. Bot. 41(4), 338-346. Doi: 10.3906/bot-1608-17

Peakall, R. and P.E. Smouse. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research — an update. Bioinformatics 28(19), 2537-2539. Doi: 10.1093/bioinformatics/bts460

Peralta, E., A. Murillo, N. Marzón, J. Pinzon, and E. Villacrés. 2013. Manual agrícola de frijol y otras leguminosas: cultivos, variedades y costos de producción. Publicación Miscelánea 135. 3th ed. INIAP, Quito.

Ponnaiah, M., E. Shiferaw, M.E. Pè, and E. Porceddu. 2011. Development and application of EST-SSRs for diversity analysis in Ethiopian grass pea. Plant Genet. Resour. 9(2), 276-280. Doi: 10.1017/S1479262111000426

Porras-Hurtado, L., Y. Ruiz, C. Santos, C. Phillips, Á. Carracedo, and M.V. Lareu. 2013. An overview of STRUCTURE: applications, parameter settings, and supporting software. Front. Genet. 4, 98. Doi: 10.3389/fgene.2013.00098

Rana, J.C., M. Rana, V. Sharma, A. Nag, R.K. Chahota, and T.R. Sharma. 2017. Genetic diversity and structure of pea (Pisum sativum L.) germplasm based on morphological and SSR markers. Plant Mol. Biol. Rep. 35(1), 118-129. Doi: 10.1007/s11105-016-1006-y

Rohlf, F.J. 1987. NTSYS-pc: microcomputer programs for numerical taxonomy and multivariate analysis. Am. Stat. 41(4), 330. Doi: 10.2307/2684761

Smýkal, P., C. Coyne, R. Redden, and N. Maxted. 2013. Peas. pp. 41-80. In: Singh, M., H.D. Upadhyaya, and I.S. Bisht (eds.). Genetic and genomic resources of grain legume improvement. Elsevier Science, London.

Smýkal, P., M. Hýbl, J. Corander, J. Jarkovský, A.J. Flavell, and M. Griga. 2008. Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theor. Appl. Genet. 117(3), 413-424. Doi: 10.1007/s00122-008-0785-4

Teshome, A., T. Bryngelsson, K. Dagne, and M. Geleta. 2015. Assessment of genetic diversity in Ethiopian field pea (Pisum sativum L.) accessions with newly developed EST-SSR markers. BMC Genet. 16(1), 102. Doi: 10.1186/s12863-015-0261-5

UPOV. 2009. Guidelines for the conduct of tests for distinctness,uniformity, and stability of Pisum sativum L. TG/7/10 Rev. International Union for the Protection of New Varieties of Plants, Geneva.

Vallejo, F.A. and E.I. Estrada. 2002. Mejoramiento genético en plantas. Universidad Nacional de Colombia, Palmira, Colombia.

Vieira, M.L.C., L. Santini, A.L. Diniz, and C.F. Munhoz. 2016. Microsatellite markers: what they mean and why they are so useful. Genet. Mol. Biol. 39(3), 312-328. Doi: 10.1590/1678-4685-GMB-2016-0027

Zong, X., R.J. Redden, Q. Liu, S. Wang, J. Guan, J. Liu, Y. Xu, X. Liu, J. Gu, L. Yan, P. Ades, and R. Ford. 2009. Analysis of a diverse global Pisum sp. collection and comparison to a chinese local P. sativum collection with microsatellite markers. Theor. Appl. Genet. 118, 193-204. Doi: 10.1007/s00122-008-0887-z

Downloads

Download data is not yet available.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.