Impact of ultraviolet B radiation applications on some secondary metabolites in thyme (Thymus vulgaris L.)

Main Article Content


Rafael Andrés Ramírez-Alvarado
Aníbal Orlando Herrera-Arévalo
Yamid Ortiz-Rojas
Claudia Patricia Pérez-Rodríguez


The impact of ultraviolet radiation B (UV-B) applications on the production of secondary metabolites, such as phenols, flavonoids and anthocyanins, in thyme plants was studied. The stems, leaves and flowers were subjected to an experiment design that had a 4´2 factorial arrangement, evaluating: dose UV-B radiation (0.05 and 0.075 Wh m-2), sampling points (75 days after transplanting [cut-off point] and 92 days after transplanting [full flowering] according to the BBCH scale), adaptation time (24 and 49 hours) and extraction matrices of plant material (fresh and dried). The experiment unit corresponded to matrices from Thymus vulgaris L. (C.N. thyme) plants. Ten extractions were done per treatment, and a chemical analysis test were performed in triplicate. The extraction was done with a modified Randall method. The results showed that the application of UV-B radiation at a dose of 0.075 Wh m-2 increased the concentration of secondary metabolites of interest. The compounds that showed a better response to treatment were phenols and anthocyanins.


Article Details


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.


Alarcón, J. 2011. Plantas aromáticas y medicinales - Enfermedades de importancia y sus usos terapéuticos - Medidas para la temporada invernal. ICA, Bogota, DC.

Baenas, N., C. García-Viguera, and D.A. Moreno. 2014. Elicitation: a tool for enriching the bioactive composition of foods. Molecules 19(9), 13541-13563. Doi: 10.3390/molecules190913541

Brunetti, C., M. Di Ferdinando, A. Fini, S. Pollastri, and M. Tattini. 2013. Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int. J. Mol. 14(2), 3540-3555. Doi: 10.3390/ijms14023540

Cabot, P. 2003. Estudio de multiplicación, requerimientos hídricos y de fertilización de diferentes especies aromáticas y medicinales de interés comercial actual. Centro de Cabrils, IRTA, Spain.

Castro, D., J. Díaz, R. Serna, M. Martínez, P. Urrea P., K. Muñoz, and E. Osorio. 2013. Cultivo y producción de plantas aromáticas y medicinales. Universidad Católica de Oriente (UCO), Medellin, Colombia.

Cechin, I., V. Rocha, and T. Fumis. 2012. Sensitivity of yellow passion fruit to ultraviolet-B radiation. Pesq. Agropec. Bras. 47(10), 1422-1427. Doi: 10.1590/S0100-204X2012001000002

Fischer, G. and C.P. Pérez. 2012. Efecto de la radiación solar en la calidad de los productos hortícolas. In: Proc. Congreso Internacional de Hortalizas en el Trópico. Bogota, 28-30 Nov. 2012. Sociedad Colombiana de Ciencias Hortícolas, Bogota.

Ghasemi, A., A. Siahpoosh, M. Setayesh, and L. Craker. 2014. Antioxidant activity, total phenolic and flavonoid contents of some medicinal and aromatic plants used as herbal teas and condiments in Iran. J. Med. Food. 17(10), 1151-1157. Doi: 10.1089/jmf.2013.0057

Gómez, M.I. 2005. Guía técnica para el manejo nutricional de los cultivos: Diagnostico, interpretación y recomendación de planes de fertilización. Microfertisa, Bogota, DC.

Gorelick, J. and N. Bernstein. 2014. Elicitation: an underutilized tool for the development of medicinal plants as a source for therapeutic secondary metabolites. Adv. Agron. 124, 201-230. Doi: 10.1016/B978-0-12-800138-7.00005-X

Hideg, É., M.A. Jansen, and A. Strid. 2013. UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci. 18(2), 107-115. Doi: 10.1016/j.tplants.2012.09.003

Hu, J., H. Fang, J. Wang, X. Yue, M. Su, Z. Mao, Q. Zou, H. Jiang, Z. Guo, L. Yu, T. Feng, L. Lu, Z. Peng, Z. Zhang, N. Wang, and X. Chen. 2020. Ultraviolet B-induced MdWRKY72 expression promotes anthocyanin synthesis in apple. Plant Sci. J. 292, 110377. Doi: 10.1016/j.plantsci.2019.110377

Huyskens-Keil, S., I. Eichholz-Dündar, K. Hassenberg, and W.B. Herppich. 2020. Impact of light quality (white, red, blue light and UV-C irradiation) on changes in anthocyanin content and dynamics of PAL and POD activities in apical and basal spear sections of white asparagus after harvest. Postharvest Biol. Technol. 161, 111069. Doi: 10.1016/j.postharvbio.2019.111069

Inostroza-Blancheteau, C., M. Reyes-Díaz, A. Arellano, M. Latsague, P. Acevedo, R. Loyola, P. Arce-Johnson, and M. Alberdi. 2014. Effects of UV-B radiation on anatomical characteristics, phenolic compounds and gene expression of the phenylpropanoid pathway in highbush blueberry leaves. Plant Physiol. Biochem. 85, 85-95. Doi: 10.1016/j.plaphy.2014.10.015

Jenkins, G.I. 2014. The UV-B photoreceptor UVR8: from structure to physiology. Plant Cell Rep. 26(1), 21-37. Doi: 10.1105/tpc.113.119446

Julkunen-Tiitto, R., N. Nenadis, S. Neugart, M. Robson, G. Agati, J. Vepsäläinen, G. Zipoli, L. Nybakken, B. Winkler, and M.A.K. Jansen. 2015. Assessing the response of plant flavonoids to UV radiation: an overview of appropriate techniques. Phytochem. Rev. 14(2), 273-297. Doi: 10.1007/s11101-014-9362-4

Kärkönen, A. and K. Kuchitsu. 2015. Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry 112, 22-32. Doi: 10.1016/j.phytochem.2014.09.016

Kumari, R. and M.N.V. Prasad. 2013. Medicinal plant active compounds produced by UV-B exposure. J. Sustain. Agr. 225-254. Doi: 10.1007/978-94-007-5961-9_8

Medina, L. 2016. Evaluación en el rendimiento de las extracciones variando pH y cuantificación de antocianinas totales por el método de pH diferencial en el extracto etanolico Vaccinium myrtillus “Arándano”. Undergraduate thesis. Universidad Nacional de Trujillo, Trujillo, Peru.

Pérez, C.P., A. Herrera, and R. Ramírez. 2013. Efecto de la aplicación de elicitores físicos durante la poscosecha en aceites esenciales de menta y romero. pp. 1908-1913. In: VII Congreso Ibérico de Agroingenieria y Ciencias Hortícolas. Madrid.

Pérez, C.P., C. Ulrichs, and S. Huyskens-Keil. 2010. Physiologische Veränderungen in Früchten der Solanace Engewächse in Abhängigkeit von physikalischen Elicitoren während der Produktion und nach der Ernte. Humboldt-Universität zu Berlin, Berlin.

Roby, M.H.H., M.A. Sarhan, K.A. Selim, and K.I. Khalel. 2013. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crops Prod. 43, 827-831. Doi: 10.1016/j.indcrop.2012.08.029

Sárosi, S., L. Sipos, Z. Kókai, Z. Pluhár, B. Szilvássy, and I. Nováka. 2013. Effect of different drying techniques on the aroma profile of Thymus vulgaris analyzed by GC–MS and sensory profile methods. Ind. Crops Prod. 46, 210-216. Doi: 10.1016/j.indcrop.2013.01.028

Shayganfar, A., M. Azizi, and M. Rasouli. 2018. Various strategies elicited and modulated by elevated UV-B radiation and protectant compounds in thymus species: differences in response over treatments, acclimation and interaction. Ind. Crops Prod. 113, 298-307. Doi: 10.1016/j.indcrop.2018.01.056

Tholl, D. 2015. Biosynthesis and biological functions of terpenoids in plants. pp. 63-106. In: Schrader, J. and J. Bohlmann (eds.). Biotechnology of isoprenoids. Springer International Publishing, Cham, Switzerland. Doi: 10.1007/10_2014_295


Download data is not yet available.