Effect of plant growth promoting bacteria on the phenology of the Amarilla maranganí quinoa cultivar





Soil bacteria, Inoculation, Vegetable performance, Yield, Andean cultivars


Bacteria associated with plant roots can generate different responses on the growth and development of plants which affect yield. For this reason, a test was conducted and aimed at evaluating the effects of plant growth promoting bacteria’s inoculation on the yield of the Amarilla Maranganí quinoa cultivar, using bacterial strains such as Bacillus macerans, Bacillus laterosporus, Bacillus licheniformis, Bacillus cereus, Actinobacillus, Pseudomonas aeruginosa, Consortia (a combination of the characterized bacteria), and DIPEL (Bacillus thuringensis var. Kurstaki). The study included the evaluation of the length of the plants and panicles as well as the number of inflorescences and seed production using a completely randomized experimental design. The results showed that the microorganisms had a large impact on plant growth. Actinobacillus increased the number of panicles while P. aeruginosa improved grain production. These results allowed us to confirm that the use of microorganisms favors the growth parameters of quinoa and allowed us to recognize the biological potential of growth promoting bacteria in this crop under conditions of poor water and nutrient availability.


Download data is not yet available.


Ávila-Martínez, E., Lizarazo-Forero, L. and Cortés-Pérez, F. (2015). Promoción del crecimiento de Baccharis macrantha (Asteraceae) con bacterias solubilizadoras de fosfatos asociadas a su rizósfera. Acta Biológica Colombiana. 20(3), 121-131. 10.15446/abc.v20n3.44742

Baldi, E. and M. Toselli. 2014. Mineralization dynamics of different commercial organic fertilizers from agro-industry organic waste recycling: An incubation experiment. Plant Soil and Environ. 60(3), 93-99. Doi: 10.17221/735/2013-PSE

Bazile, D., S.-E. Jacobsen, and A. Verniau. 2016. The global expansion of quinoa: Trends and limits. Front. Plant Sci. 7, 622. Doi: 10.3389/fpls.2016.00622

Bello, O.F., J.F. García, and W.J. Cuervo. 2016. Cuantificación de diazótrofos en la rizósfera del olivo (Olea europaea L.) cultivado en Boyacá, Colombia. Acta Agron. 65(2), 109-115. Doi: 10.15446/acag.v65n2.44270

Cameron, K.A., A.J. Hodson, and A.M. Osborn. 2012. Carbon and nitrogen biogeochemical cycling potentials of supraglacial cryoconite communities. Polar Biol. 35(9), 1375-1393. Doi: 10.1007/s00300-012-1178-3

Christiansen, J.L., S-E. Jacobsen, and S.T. Jørgensen. 2010. Photoperiodic effect on flowering and seed development in quinoa (Chenopodium quinoa Willd.). Acta Agric. Scand. B Soil Plant Sci. 60(6), 539-544. Doi: 10.1080/09064710903295184

García-Parra, M.A., L.A. Cuellar-Rodríguez, and H.E. Balaguera-López. 2022. Arbuscular mycorrhiza symbiosis in quinoa (Chenopodium quinoa Willd.): A systematic review. Rev. Fac. Nac. Agron. Medellín 75(1). Doi: 10.15446/rfnam.v75n1.95754

García-Parra, M., J. Garcia-Molano and Y. Deaquiz-Oyola. 2019. Physiological perfomance of quinoa (Chenopodium quinoa Willd.) under agricultural climatic conditions in Boyaca, Colombia. Agron. Colomb. 37(2). 144-152. Doi: 10.15446/agron.colomb.v37n2.76219

García-Parra, M.A. and N.Z. Plazas-Leguizamón. 2018. La quinua (Chenopodium quinoa Willd.) en los sistemas de producción agraria. Rev. P + L 13(1), 112-119. Doi: 10.22507/pml.v13n1a6

García, J.F. 2006. Principios generales de la agricultura orgánica. Fundación Universitaria Juan de Castellanos, Tunja, Colombia.

Geren, H. 2015. Effects of different nitrogen levels on the grain yield and some yield components of quinoa (Chenopodium quinoa Willd.) under mediterranean climatic conditions. Turk. J. Field Crops 20(1), 59-64. Doi: 10.17557/.39586

Gholamalizadeh, R., G. Khodakaramian, and A.A. Ebadi. 2017. Assessment of rice associated bacterial ability to enhance rice seed germination and rice growth promotion. Braz. Arch. Biol. Technol. 60, 1-13. Doi: 10.1590/1678-4324-2017160410

Glick, B. 2012. Plant growth-promoting bacteria : Mechanisms and applications. Scientifica 2012, 963401. Doi: 10.6064/2012/963401

Gómez, L. and E. Aguilar. 2016. Guía de cultivo de la quinua. FAO; Universidad Nacional Agraria La Molina, Lima.

Hinojosa, L., J.A. González, F.H. Barrios-Masias, F. Fuentes, and K.M. Murphy. 2018. Quinoa abiotic stress responses: A review. Plants 7(4), 106. Doi: 10.3390/plants7040106

Hussain, M.I., A.J. Al-Dakheel, and M.J. Reigosa. 2018. Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants: Prospects for salinity tolerance and yield stability. Plant Physiol. Biochem. 129, 411-420. Doi: 10.1016/j.plaphy.2018.06.023

Issa-Ali, O., R. Fghire, F. Anaya, O. Benlhabib, and S. Wahbi. 2019. Physiological and morphological responses of two quinoa cultivars (Chenopodium quinoa Willd.) to drought stress. Gesunde Pflanzen 71(2), 123-133. Doi: 10.1007/s10343-019-00460-y

Jacobsen, S-E. 2003. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev. Int. 19(1-2), 167-177. Doi: 10.1081/FRI-120018883

Kansomjet, P., P. Thobunluepop, S. Lertmongkol, E. Sarobol, P. Kaewsuwan, P. Junhaeng, N. Pipattanawong, and M.T. Ivan. 2017. Response of physiological characteristics, seed yield and seed quality of quinoa under difference of nitrogen fertilizer management. Am. J. Plant Physiol. 12(1), 20-27. Doi: 10.3923/ajpp.2017.20.27

Ku, Y., G. Xu, X. Tian, H. Xie, X. Yang, C. Cao, and Y. Chen. 2018. Root colonization and growth promotion of soybean, wheat and Chinese cabbage by Bacillus cereus YL6. PLoS ONE 13(11), e0210035. 10.1371/journal.pone.0210035

Lesjak, J. and D.F. Calderini. 2017. Increased night temperature negatively affects grain yield, biomass and grain number in Chilean quinoa. Front. Plant Sci. 8, 352. Doi: 10.3389/fpls.2017.00352

Linu, M., Asok, A., Thampi, M., Sreekumar, J. and Jisha, M. (2019). Plant Growth Promoting Traits of Indigenous Phosphate Solubilizing Pseudomonas aeruginosa Isolates from Chilli (Capsicumannuum L.) Rhizosphere. Communications in Soil Science and Plant Analysis. 50(4), 444-457. Doi: 10.1080/00103624.2019.1566469

Mehnaz, S., T. Kowalik, B. Reynolds, and G. Lazarovits. 2010. Growth promoting effects of corn (Zea mays) bacterial isolates under greenhouse and field conditions. Soil Biol. Biochem. 42(10), 1848-1856. Doi: 10.1016/j.soilbio.2010.07.003

Melo, D.I. 2016. Studio di adattabilità colturale della quinoa (Chenopodium quinoa Willd.) in Italia Settentrionale. PhD thesis. Università Cattolica del Sacro Cuore di Piacenza, Milan, Italia.

Nishukawa. 2012. Manual de nutrición y fertilización de la quinua. Editorial Funart, Lima

Ortuño, N., J.A. Castillo, M. Claros, O. Navia, M. Angulo, D. Barja, and V. Angulo. 2013. Enhancing the sustainability of quinoa production and soil resilience by using bioproducts made with native microorganisms. Agronomy 3(4), 732-746. Doi: 10.3390/agronomy3040732

Pérez-Moncada, U.A., M. Ramírez-Gómez, Y.A. Zapata-Narváez, and J.M. Córdoba-Sánchez. 2015. Efecto de la inoculación simple y combinada con Hongos Formadores de Micorriza Arbuscular (HFMA) y Rizobacterias Promotoras de Crecimiento Vegetal (BPCV) en plántulas micropropagadas de mora (Rubus glaucus L.). Corpoica Cienc. Tecnol. Agropecu. 16(1), 95-103. Doi: 10.21930/rcta.vol16_num1_art:383

Sanabria, K.M. and H. Lazo. 2018. Aclimatación a la alta temperatura y tolerancia al calor (TL 50) en 6 variedades de Chenopodium quinoa. Rev. Peru. Biol. 25(2), 147-152. Doi: 10.15381/rpb.v25i2.14689

Schindler, D.W., R.E. Hecky, D.L. Findlay, M.P. Stainton, B.R. Parker, M.J. Paterson, K.G. Beaty, M. Lyng, and S.E.M. Kasian. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. 105(32), 11254-11258. Doi: 10.1073/pnas.0805108105

Sharifi, R. and C.M. Ryu. 2018. Revisiting bacterial volatile-mediated plant growth promotion: Lessons from the past and objectives for the future. Ann. Bot. 122(3), 349-358. Doi: 10.1093/aob/mcy108

Singh, R.P. and P.N. Jha. 2016. A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Front. Plant Sci. 7, 1890. Doi: 10.3389/fpls.2016.01890

Steindler, L., I. Bertani, L. De Sordi, S. Schwager, L. Eberli, and V. Venturi. 2009. LasI/R and RhlI/R quorum sensing in a strain of Pseudomonas aeruginosa beneficial to plants. Appl. Environ. Microb. 75(15). Doi: 10.1128/AEM.02914-08

Sousa, A.M., M.O. Pereira, and A. Lourenço. 2015. MorphoCol: An ontology-based knowledgebase for the characterization of clinically significant bacterial colony morphologies. J. Biomed. Infor. 55, 55-63. Doi: 10.1016/j.jbi.2015.03.007

Taiz, L. and E. Zeiger. 2006. Fisiología vegetal. Universitat Jaume I, Castellon de la Plana, Spain.

Torres, J., H. Vargas, G. Corredor, and L.M. Reyes. 2000. Caracterización morfo agronómica de diecinueve cultivares de quinua (Chenopodium quinoa Willd.) en la sabana de Bogotá. Agron. Colomb. 17, 60-68.

Yang, A., S.S. Akhtar, S. Iqbal, M. Amjad, M. Naveed, Z.A. Zahir, and S-E. Jacobsen. 2016. Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Funt. Plant Biol. 43(7), 632-642. Doi: 10.1071/FP15265

Quinoa plant. Photo: M.A. García-Parra




How to Cite

Amado-Rodríguez, J. L., Humeje-Pan, N. P., Blanco-Valvuena, J. O., Torres-Merchán, N. Y., & García-Parra, M. A. (2022). Effect of plant growth promoting bacteria on the phenology of the Amarilla maranganí quinoa cultivar. Revista Colombiana De Ciencias Hortícolas, 16(1), e13440. https://doi.org/10.17584/rcch.2022v16i1.13440



Other species section