Skip to main navigation menu Skip to main content Skip to site footer

Genotype-by-environment interaction and selection of superior Physalis peruviana L. genotypes

Cape gooseberry fruit obtained in an experimental plot in the department of Cundinamarca. Photo: E. Sánchez-Betancourt

Abstract

Cape gooseberry (Physalis peruviana L.) productivity in Colombia can be increased by developing high-yielding and adaptable varieties identified in multi-environment trials. In this study, the genotype-by-environment interaction (G×E) for fruit yield and fruit weight of 13 cape gooseberry genotypes at seven locations was evaluated using a randomized complete block design. G×E interaction was significant for yield and fruit weight, suggesting a differential response of genotypes across environments. Through the AMMI analysis, similar and contrasting environments were identified, as well as the genotypes that contributed the most to the G×E interaction. Genotypes I, B, D, and H were the high yielding, ranging from 25.2 to 27.3 t ha-1, so they could be recommended for commercial cultivation. Genotypes B and D was stable in yield and widely adapted; while the genotypes I and H showed a specific adaptation for yield and exhibited heavier fruits. Genotype R1 exhibited the greater fruit weight in most locations except Ipiales but showed low fruit yield. The suitable locations for the cultivation of cape gooseberry were Pasto, Puerres, and Ipiales since they presented the highest yields and fruit weight.

Keywords

Cape gooseberry, G×E, AMMI, Mega-environments, Fruit yield, Adaptability

PDF

References

  1. Agronet. 2020. Reportes estadísticos. In: Ministerio de Agricultura y Desarrollo Rural, http://www.agronet.gov.co/estadistica/Paginas/default.aspx; consulted: September, 2022.
  2. Angulo, R. 2005. Crecimiento, desarrollo y producción de la uchuva en condiciones de invernadero y campo abierto. pp. 111-130. In: Fischer, G., D. Miranda, W. Piedrahíta, and J. Romero (eds.). Avances en cultivo, poscosecha y exportación de la uchuva (Physalis peruviana L.) en Colombia. Universidad Nacional de Colombia, Bogota.
  3. Bonilla H., Y. Carbajal, M. Siles, and A. López. 2019. Diversidad genética de tres poblaciones de Physalis peruviana a partir del fraccionamiento y patrón electroforético de proteínas de reserva seminal. Rev. Peru. Biol. 26(2), 243-250. Doi: https://doi.org/10.15381/rpb.v26i2.16370
  4. Ceballos-Aguirre, N., F.A. Vallejo-Cabrera, and Y. Morillo-Coronado. 2020. Estimating genotype-environment interactions for internal fruit quality traits in cherry tomatoes. Rev. Colomb. Cienc. Hortic. 14(3), 361-374. Doi: https://doi.org/10.17584/rcch.2020v14i3.11297
  5. Criollo, H., T.C. Lagos, G. Fischer, L. Mora, and L. Zamudio. 2014. Comportamiento de tres genotipos de uchuva (Physalis peruviana L.) bajo diferentes sistemas de poda. Rev. Colomb. Cienc. Hortic. 8(1), 34-43. Doi: https://doi.org/10.17584/rcch.2014v8i1.2798
  6. Crossa, J. 1990. Statistical analyses of multilocation trials. Adv. Agron. 44, 55-85. Doi: https://doi.org/10.1016/S0065-2113(08)60818-4
  7. Crossa, J., P.N. Fox, W.H. Pfeiffer, S. Rajaram, and H.G. Gauch Jr. 1991. AMMI adjustment for statistical analysis of an international wheat yield trial. Theor. Appl. Genet. 81(1), 27-37. Doi: https://doi.org/10.1007/BF00226108
  8. Demir T., M.O. Özen, and E.E. Hameş-Kocabaş. 2014. Antioxidant and cytotoxic activity of Physalis peruviana. Med. Plant Res. 4(3), 30-34. Doi: https://doi.org/10.5376/mpr.2014.04.0004
  9. El-Beltagi, H.S., H.I. Mohamed, G. Safwat, M. Gamal, and B.M.H. Megahed. 2019. Chemical composition and biological activity of Physalis peruviana L. Gesunde Pflanz. 71, 113-122. Doi: https://doi.org/10.1007/s10343-019-00456-8
  10. Fischer, G. 2005. El problema del rajado del fruto de la uchuva y su posible control. In: Fischer, G., D. Miranda, W. Piedrahíta, and J. Romero (eds.). Avances en cultivo, poscosecha y exportación de la uchuva (Physalis peruviana L.) en Colombia. Universidad Nacional de Colombia, Bogota.
  11. Fischer, G. and L.M. Melgarejo. 2020. The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Rev. Colomb. Cienc. Hortic. 14(1), 76-89. Doi: https://doi.org/10.17584/rcch.2020v14i1.10893
  12. Fischer, G. and D. Miranda. 2012. Uchuva (Physalis peruviana L.). pp. 851-873. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  13. Franco-Florez, V., S.A. Liberato Guío, E. Sánchez-Betancourt, F.L. García-Arias, and V.M. Nuñez Zarantes. 2021. Cytogenetic and cytological analysis of Colombian cape gooseberry genetic material for breeding purposes. Caryologia 74(3), 21-30. Doi: https://doi.org/10.36253/caryologia-1081
  14. García-Arias, F.L., J.A. Osorio-Guarín, and V.M. Núñez Zarantes. 2018. Association study reveals novel genes related to yield and quality of fruit in cape gooseberry (Physalis peruviana L.). Front. Plant Sci. 9, 362. Doi: https://doi.org/10.3389/fpls.2018.00362
  15. Gauch, H.G. 1992. Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier, Amsterdam.
  16. Gauch Jr., H.G. 2013. A simple protocol for AMMI analysis of yield trials. Crop Sci. 53(5), 1860-1869. Doi: https://doi.org/10.2135/cropsci2013.04.0241
  17. Gauch Jr., H.G., H.-P. Piepho, and P. Annicchiarico. 2008. Statistical analysis of yield trials by AMMI and GGE: further considerations. Crop Sci. 48(3), 866-889. Doi: https://doi.org/10.2135/cropsci2007.09.0513
  18. Gauch Jr., H.G. and R.W. Zobel. 1997. Identifying mega-environments and targeting genotypes. Crop Sci. 37(2), 311-326. Doi: https://doi.org/10.2135/cropsci1997.0011183X003700020002x
  19. Huang, M., J.-X. He, H.-X. Hu, K. Zhang, X.-N. Wang, B.-B. Zhao, H.-X. Lou, D.-M. Ren, and T. Shen. 2020. Withanolides from the genus Physalis: a review on their phytochemical and pharmacological aspects. J. Pharm. Pharmacol. 72(5), 649-669. Doi: https://doi.org/10.1111/jphp.13209
  20. Liberato, S., E. Sánchez-Betancourt, J.H. Argüelles, C. González, V.M. Núñez, and L.S. Barrero. 2014. Citogenética de genotipos de uchuva, Physalis peruviana L., y Physalis floridana Rydb., con respuesta diferencial a Fusarium oxysporum. Corpoica Cienc. Tecnol. Agropecu. 15(1), 51-61. Doi: https://doi.org/10.21930/rcta.vol15_num1_art:396
  21. Minagricultura, Ministerio de Agricultura y Desarrollo Rural Colombia. 2020. Evaluaciones Agropecuarias Municipales EVA. In: https://www.datos.gov.co/Agricultura-y-Desarrollo-Rural/Evaluaciones-Agropecuarias-Municipales-EVA/2pnw-mmge/about_data; consulted: September, 2022.
  22. Minagricultura, Ministerio de Agricultura y Desarrollo Rural Colombia. 2022. Colombia es el mayor productor y exportador de uchuva a nivel mundial. In: Cadenas Productivas, https://www.minagricultura.gov.co/noticias/Paginas/Colombia-es-el-mayor-productor-y-exportador-de-uchuva-a-nivel-mundial.aspx; consulted: December, 2022.
  23. Mayorga-Cubillos, F., J. Argüelles-Cárdenas, E. Rodríguez-Velásquez, C. González-Almario, C. Ariza-Nieto, and L.S. Barrero. 2019. Yield and physicochemical quality of Physalis peruviana L. fruit related to the resistance response against Fusarium oxysporum f. sp. physali. Agron. Colomb. 37(2), 120-128. Doi: https://doi.org/10.15446/agron.colomb.v37n2.77550
  24. Mazorra, M.F., A.P. Quintana, D. Miranda, G. Fischer, and B. Cháves. 2003. Análisis sobre el desarrollo y la madurez fisiológica del fruto de la uchuva (Physalis peruviana L.) en la zona de Sumapaz (Cundinamarca). Agron. Colomb. 21(3), 175-189.
  25. Mendoza, J.H., A. Rodríguez, and P. Millán. 2012. Caracterización físico química de la uchuva (Physalis peruviana) en la región de Silvia Cauca. Biotecnol. Sector Agropecuario Agroind. 10(2), 188-196.
  26. Miranda, D. 2005. Criterios para el establecimiento, los sistemas de cultivo, el tutorado y la poda de la uchuva. pp. 29-54. In: Fischer, G., D. Miranda, W. Piedrahíta, and J. Romero (eds.). Avances en cultivo, poscosecha y exportación de la uchuva (Physalis peruviana L.) en Colombia. Universidad Nacional de Colombia, Bogota.
  27. Miranda, D. and G. Fischer. 2021. Avances tecnológicos en el cultivo de la uchuva (Physalis peruviana L.) en Colombia. pp. 14-36. In: Fischer, G., D. Miranda, S. Magnitskiy, H.E. Balaguera-López, and Z. Molano (eds.). Avances en el cultivo de las berries en el trópico. Sociedad Colombiana de Ciencias Hortícolas, Bogota. Doi: https://doi.org/10.17584/IBerries
  28. Movahedi, H., K. Mostafavi, M. Shams, and A.R. Golparvar. 2020. AMMI analysis of genotype × environment interaction on grain yield of sesame (Sesamum indicum L.) genotypes in Iran. Biotechnol. Biotechnol. Equip. 34(1), 1013-1018. Doi: https://doi.org/10.1080/13102818.2020.1816216
  29. Ngailo, S., H. Shimelis, J. Sibiya, K. Mtunda, and J. Mashilo. 2019. Genotype-by-environment interaction of newly-developed sweet potato genotypes for storage root yield, yield-related traits and resistance to sweet potato virus disease. Heliyon 5(3), e01448. Doi: https://doi.org/10.1016/j.heliyon.2019.e01448
  30. Panayotov, N., D. Dimova, A. Popova, V. Ivanova, and D. Svetleva. 2016. Assessment of yield and stability of two varieties of cape gooseberry (Physalis peruviana L.) depending on the nitrogen rate. Mokslo Darbai 7(12), 157-161.
  31. Peña, J.F., J.D. Ayala, G. Fischer, B. Cháves, J.F. Cárdenas-Hernández, and P.J. Almanza. 2010. Relaciones semilla-fruto en tres ecotipos de uchuva (Physalis peruviana L.). Rev. Colomb. Cienc. Hortic. 4(1), 43-54. Doi: https://doi.org/10.17584/rcch.2010v4i1.1224
  32. Rodríguez, N.C. and M.L. Bueno. 2006. Estudio de la diversidad citogenética de Physalis peruviana L. (Solanaceae). Acta Biol. Colomb. 11(2), 75-85.
  33. Rosero Erazo, J.A., M.A. García Dávila, T.C. Lagos Burbano, D.E. Duarte Alvarado, and L.K. Lagos Santander. 2021. Aptitud combinatoria del rendimiento en líneas endogámicas de uchuva (Physalis peruviana L.). Acta Agron. 70(4), 345-352. Doi: https://doi.org/10.15446/acag.v70n4.79049
  34. Sánchez Aspeytia, D., F. Borrego Escalante, V.M. Zamora Villa, J.D. Sánchez Chaparro, and F. Castillo Reyes. 2015. Estimación de la interacción genotipo-ambiente en tomate (Solanum lycopersicum L.) con el modelo AMMI. Rev. Mex. Cienc. Agric. 6(4), 763-778. Doi: https://doi.org/10.29312/remexca.v6i4.617
  35. Sánchez-Betancourt, E. and V.M. Núñez Zarantes. 2022. Nivel de ploidía de plantas de uchuva, Physalis peruviana, obtenidas mediante cultivo de anteras. Temas Agrar. 27(1), 231-244. Doi: https://doi.org/10.21897/rta.v27i1.3080
  36. SAS Institute Inc. 2020. SAS® Enterprise Guide 8.3: Guía del usuario. Cary, NC.
  37. Suescún, L., E. Sánchez, M. Gómez, F.L. Garcia Arias, and V.M. Núñez Zarantes. 2011. Producción de plantas genéticamente puras de uchuva Physalis peruviana. Cámara de Comercio de Bogotá, Bogota.
  38. Valderrama, M.A. and V.M. Núñez. 2021. Aguaymanto. pp. 208-209. In: International Potato Center (ed.). Los Andes y los alimentos del futuro. 50 Andean Future Foods. International Potato Center, Lima.
  39. Yan, W., K.T. Nilsen, and A. Beattie. 2023. Mega-environment analysis and breeding for specific adaptation. Crop Sci. 63(2), 480-494. Doi: https://doi.org/10.1002/csc2.20895
  40. Zobel, R.W., M.J. Wright, and H.G. Gauch Jr. 1988. Statistical analysis of a yield trial. Agron. J. 80(3), 388-393. Doi: https://doi.org/10.2134/agronj1988.00021962008000030002x

Downloads

Download data is not yet available.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.