Skip to main navigation menu Skip to main content Skip to site footer

Detection of asymptomatic Solanum lycopersicum L. plants infected with Fusarium oxysporum using reflectance VIS spectroscopy

Abstract

Asymptomatic plants are reservoirs of pathogens because they can remain infected most of the development cycle, becoming a source of contamination for the rest of the crop. The objective of this study was to evaluate a method of detection and discrimination of two F. oxysporum isolates on tomato plants using reflectance spectroscopy in the VIS region. The incidence of the fungal isolate from the purple passion fruit plants (F05) was greater than that observed in the strain isolated from the tomato plant (F07), with values of 60.0% at 11 days and 81.8% at 22 days; the incidence present in the plants with strain F07 was 30.0% and 64.3% in the evaluated period. The F05 strain showed better grouping in both periods of time, both in the Principal Component Analysis and Linear Discriminant Analysis, than the controls, as did the F07 strain. These results suggest that reflectance spectroscopy in the VIS is a sensitive and reliable method that may be suitable for early diagnosis of plant diseases.

Keywords

Diseases, VIS/NIR spectroscopy, Detection methods, Reflectance, Multivariate analysis

PDF (Español)

Author Biography

Veronica Botero Fernandez

Departamento de Geociencias y Medio Ambiente, Profesora Asociada


References

  1. Abu-Khalaf, N. y M. Salman. 2014. Visible/Near infrared (VIS/NIR) spectroscopy and multivariate data analysis (MVDA) for identification and quantification of olive leaf spot (OLS) disease. Palest. Tech. Univ. Res. J. 2(1), 1-8.
  2. Baayen, R., P.K. O’Donnell, P.J. Bonants, E. Cigelnik, L. Kroon, E.J. Roebroeck y C. Waalwijk. 2000. Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Phytopathology 90, 891-900. Doi: 10.1094/PHYTO.2000.90.8.891
  3. Chaerle, L. y D. Van der Straeten. 2000. Imaging techniques and the early detection of plant stress. Trends Plant Sci. 5, 495-501. Doi: 10.1016/S1360-1385(00)01781-7
  4. Couture, J.J., S.P. Serbin y P. Townsend. 2013. Spectroscopic sensitivity of real-time, rapidly induced phytochemical change in response to damage. New Phytol. 198(1), 311-9. Doi: 10.1111/nph.12159
  5. Feller, C., H. Bleiholder, L. Buhr, H. Hack, M. Hess, R. Klose, U. Meier, R. Stauss, T. van den Boom y E. Weber. 1995. Phänologische entwicklungsstadien von gemüsepflanzen: fruchtgemüse und hülsenfrüchte. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 356, 217-232.
  6. Ferri, C., R. Formaggio y M. Schiavinato. 2004. Narrow band spectral indexes for chlorophyll determination in soybean canopies [Glycine max (L.) Merril]. Braz. J. Plant Physiol. 16(3), 131-136. Doi: 10.1590/S1677-04202004000300002
  7. Fourty, T., F. Baret, S. Jacquemoud, G. Schmuck y J. Verdebout. 1996. Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems. Remote Sens. Environ. 56, 104-117. Doi: 10.1016/0034-4257(95)00234-0
  8. Franke, J. y G. Menz. 2007. Multi-temporal wheat disease detection by multi-spectral remote sensing. Precision Agric. 8(3), 161-172. Doi: 10.1007/s11119-007-9036-y
  9. Garcés, E., A. Orozco y A.C. Zapata. 1999. Fitopatología en flores. Acta Biol Colomb. 4(2), 5-26.
  10. Garcés, E., G.R. Bautista y H. Valencia. 2001. Fusarium oxysporum el hongo que nos falta conocer. Acta Biol. Colomb. 6(1), 7-25.
  11. Gitelson, A., A. Viña, V. Ciganda, D. Rundquist y T.J. Arkebauer. 2005. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 32. Doi: 10.1029/2005GL022688
  12. Isaksson, T. y T. Naes. 1988. The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy. Appl. Spectrosc. 42(7), 1273-1284. Doi: 10.1366/0003702884429869
  13. Jones, J. y P. Crill. 1974. Susceptibility of "resistant" tomato cultivars to fusarium wilt. Phytopathology 64, 1507-1510. Doi: 10.1094/Phyto-64-1507
  14. Kolander, T., M.J.C. Bienapfl, J.E. Kurle y D.K. Malvick. 2012. Symptomatic and asymptomatic host range of Fusarium virguliforme, the causal agent of soybean sudden death syndrome. Plant Dis. 96(8), 1148-1153. Doi: 10.1094/PDIS-08-11-0685-RE
  15. Lafontaine, P. y N. Benhamou. 2010. Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f.sp. radicis-lycopersici. Biocontrol Sci. Technol. 6(1), 111-124. Doi: 10.1080/09583159650039575
  16. Leslie, J.F. y B.A. Summerell. 2006. The Fusarium laboratory manual. Blackwell Publishing, Ames, IA. Doi: 10.1002/9780470278376
  17. Lorenzini, G., L. Guidi, C. Nali. C. Ciompi y G.F. Soldatini. 1997. Photosynthetic response of tomato plants to vascular wilt diseases. Plant Sci. 124(2), 143-152. Doi: 10.1016/S0168-9452(97)04600-1
  18. Mahlein, A.K., U. Steiner, C. Hillnhütter, H. Dehne y E.C. Oerke. 2012. Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods 8(3), PMC3274483. Doi: 10.1186/1746-4811-8-3
  19. Morid, B., S. Hajmansoor y N. Kakvan. 2012. Screening of resistance genes to fusarium root rot and fusarium wilt diseases in tomato (Lycopersicon esculentum) cultivars using RAPD and CAPs markers. Eur. J. Exp. Biol. 2(4), 931-939.
  20. Naidua, R.A., E.M. Perryb, F.J. Pierceb y T. Mekuriaa. 2008. The potential of spectral reflectance technique for the detection of grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Comput. Electron. Agr. 66, 38-45. Doi: 10.1016/j.compag.2008.11.007
  21. Olivain, C., S. Trouvelot, M.N. Binet, C. Cordier, A. Pugin y C. Alabouvette. 2003. Colonization of flax roots and early physiological responses of flax cells inoculated with pathogenic and nonpathogenic strains of Fusarium oxysporum. Appl. Environ. Microbiol. 69(9), 5453-5462. Doi: 10.1128/AEM.69.9.5453-5462.2003
  22. Ortiz, E. y L. Hoyos-Carvajal. 2016. Standard methods for inoculations of F. oxysporum and F. solani in Passiflora. Afr. J. Agric. Res. 11(17), 1569-1575. Doi: 10.5897/AJAR2015.10448
  23. Ramachandra, R. y G.R. Ravishankarb. 2002. Plant cell cultures: chemical factories of secondary metabolites. Biotechnol. Adv. 20, 101-153. Doi: 10.1016/S0734-9750(02)00007-1
  24. Rivard, C. y F. Louws. 2011. Tomato Grafting for Disease Resistance and Increased Productivity. Agricultural Innovations. Sustainable Agriculture Research and Education (SARE) program. Fact Sheets 12AGI2011. En: http://www.sare.org/factsheet/12AGI2011; consulta: febrero de 2018.
  25. Sankaran, S., A. Mishra, J. Mari y R. Ehsani. 2011. Visible-near infrared spectroscopy for detection of Huanglongbing in citrus orchards. Comput. Electron. Agr. 77, 127-134. Doi: 10.1016/j.compag.2011.03.004
  26. Spinelli, F., M. Noferini y G. Costa. 2006. Near infrared spectroscopy (NIRs): Perspective of fire blight detection in asymptomatic plant material. Acta Hortic. 704, 87-90. Doi. 10.17660/ActaHortic.2006.704.9
  27. Szuvandzsiev, P., L. Helyes, A. Lugasi, C. Szántó, P. Baranowski y Z. Pék. 2014. Estimation of antioxidant components of tomato using VIS-NIR reflectance data by handheld portable spectrometer. Int. Agroph. 28(4), 521-527. Doi: 10.2478/intag-2014-0042
  28. Ustina, S.L., A.A. Gitelsonb, S. Jacquemoudc, M. Schaepmand, G. Asnere, J.A. Gamonf y P. Zarco-Tejadag. 2009. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ. 113(1), 67-77. Doi: 10.1016/j.rse.2008.10.019
  29. Zhang, M., Z. Qin, X. Liu y S.L. Ustin. 2003. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. Int. J. Appl. Earth Observ. Geoinf. 4, 295-310. Doi: 10.1016/S0303-2434(03)00008-4

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.