Skip to main navigation menu Skip to main content Skip to site footer

Genetic diversity of <i>Moniliophthora roreri</i> using Amplified Fragment Length Polymorphism (AFLPs)

Supporting Agencies
Universidad Francisco de Paula Santander, Federación Nacional de Cacaoteros

Moniliophthora roreri. Foto: L. Quintero

Abstract

Cacao cultivation is affected by the Moniliophthora roreri phytopathogen, which causes large production losses in Norte de Santander. This study shows the results obtained using the AFLPs of M. roreri. The kit for analysis system II was standardized and applied to 56 samples of M. roreri, isolated from nine municipalities. The combination with the highest number of polymorphisms was E-ACC/M-CAA. With 90 bands and a smaller number of alleles (6), the E-ACG/M-CAA combination yielded 90 bands and a larger number of alleles (23); the E-AAC/M-CAA combination had 94 bands and alleles (12). The data analysis was carried out according to the dendrogram of similarity or genetic distances of Nei, obtaining five groups with a high variability between samples, from 6.5 to 58%. By combining the morphological and molecular information, the level of genetic diversity in Moniliophthora roreri was determined.

Keywords

Molecular marker, genetic similarity, moniliasis, phytopathogen, molecular characterization.

PDF (Español)

References

  • Barcelos, E. 2002. Genetic diversity and relationship in American and African oil palm as revealed by RFLP and AFLP molecular Markers. Pesq. Agropec. Bras. 37(8), 1105-1114. Doi: https://doi.org/10.1590/S0100-204X2002000800008
  • Billotte, N., L. Frances, P. Amblard, T. Durandgasselin, J.L. Noyer y B. Courtois. 2001. Search for AFLP and microsatellite molecular markers of the SH gene in oil palm (Elaeis guineensis Jacq.) by bulk segregan analysis (BSA) and by genetic mapping. pp. 442-445. En: PIPOC International Palm Oil Congress-Cutting-edge technologies for sustained competitiveness, Proceedings Agriculture. Malasia.
  • Chua, K.L., R. Singh y S.C. Cheah. 2001. Construction of oild palm (Elaeis guineensis Jacq.). Linkage maps using AFLP markers. pp. 461-467. En: PIPOC International Palm Oil Congress-Cutting-edge technologies for sustained competitiveness, Proceedings Agriculture. Malasia.
  • Correa, J., S. Castro y J. Coy. 2014. Estado de la moniliasis del cacao causada por Moniliophthora roreri en Colombia. Acta Agron. 63(4), 388-399. Doi: https://doi.org/10.15446/acag.v63n4.42747
  • Díaz-Valderrama, J.R. y M.C. Aime. 2016. The cacao pathogen Moniliophthora roreri (Marasmiaceae) possesses biallelic A and B mating loci but reproduces clonally. Heredity 116, 491-501. Doi: https://doi.org/10.1038/hdy.2016.5
  • Galeano, C.H. 2005. Estandarización de la técnica molecular de AFLP en palma de aceite tipo Dura (Elaeis guineensis Jacq.) y estudio preliminar de caracterización. Agron. Colomb. 23(1), 42-49.
  • González, G., S. Aleman y D. Infante. 2003. Asexual genetic variability in Agave fourcroydes II: selection among individuals in a clonally propagated population. Plant Sci. 165(3), 595-601. Doi: https://doi.org/10.1016/S0168-9452(03)00227-9
  • Grisales, S. y L. Afanador. 2007. Análisis de variabilidad genética en Moniliophthora roreri con AP-PCR y RAPD en Antioquia, Colombia. Rev. Colomb. Biotecnol. 9(2), 15-32.
  • Hong, Y. y A. Chuah. 2003. A format for databasing and comparison of AFLP fingerprintint profiles. BMC Bioinformatics 4(7), 1-11.
  • Innan, H., R. Terauchi, G. Kahl y F. Tajima. 1999. A method for estimating nucleotide diversity from AFLP data. Genet. 151, 1157-1164.
  • Karp, A. y K. Edwards. 1997. DNA markers: a global overview. pp. 1-13. En: Caetano-Anollés, G. y P.M. Gresshoff (eds.). DNA markers: protocols, aplications and overviews. Wiley, New York, USA.
  • Majer, D., R. Mithen, B.G. Lewis, P. Vos y R.P. Oliver. 1996. The use of AFLP fingerprinting for the detection of genetic variation in fungi. Mycol Res. (110), 1107-1111. Doi: https://doi.org/10.1016/S0953-7562(96)80222-X
  • Márquez, M. 2003. Caracterización molecular y morfológica de progenies de árboles plus seleccionadas dentro del ensayo de procedencias y progenies de Cordia alliodora de cenicafé-Colombia. Tesis de maestría. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Turrialba, Costa Rica.
  • Mayes, S., P.L. Jack, D.F. Marshall y R.H.V. Corley. 1997. Construction of RFLP genetic link-age map for oil palm. (Elaeis guineensis Jacq.). Genome 40(1), 116-122. Doi: 10.1139/g97-016
  • Mueller, U.G., S.E. Lipari y M.G. Milgroom. 1996. Amplified fragment length polymorphism (AFLP) fingerprinting of symbiotic fungi cultured by the fungus-growing ant Cyphomyrmes minutus. Mol. Ecol. (5), 119-122. Doi: https://doi.org/10.1111/j.1365-294X.1996.tb00297.x
  • Mueller, U.G. y L.L. Wolfenbarger. 1999. AFLP genotyping and fingerprinting. Tree. (14), 389-394. Doi: https://doi.org/10.1016/S0169-5347(99)01659-6
  • Nei, M. y W.H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonuclease. Proc. Nat. Acad. Sci. 76(10), 5269-5273. Doi: https://doi.org/10.1073/pnas.76.10.5269
  • Osorio, M., E. Gámez, S. Molina y D. Infante. 2012. Evaluation of cassava plants generated by somatic embryogenesis in different stages of development using molecular markers. Electron. J. Biotechnol. 15(4), Doi: https://doi.org/10.2225/vol15-issue4-fulltext-3
  • Paredes, M. 2016. El manejo fitosanitario del cultivo de cacao nacional (Theobroma cacao L.) y el rendimiento del mismo, en la asociación kallari. Tesis de maestría. Universidad Técnica de Ambato, Ambato, Ecuador.
  • Powell, W., M. Morganten, C. Andre, M. Hanafey, J. Voguel, S. Tingey y A. Rafaskyl. 1996. The Comparison of RFLP, RAPD, AFLP and SSR markers for germplasm analysis. Mol. Breed. 2(3), 225-238. Doi: https://doi.org/10.1007/BF00564200
  • Phillips-Mora, W. 2013. Un hongo mortal. En: CropLife Latinamerica, https://www.croplifela.org/es/plagas/listado-de-plagas/220-moniliasis-del-cacao; consulta: agosto de 2017.
  • Phillips-Mora, W. 2003. Origin, biogeography, genetic diversity and taxonomic affinities of the cacao (Theobroma cacao L.) fungus Moniliophthora roreri (Cif.) Evans et al. as determined using molecular, phytopathological and morpho-physiolofical evidence. Ph.D. thesis. Department of Agricultural Botany, University of Reading, Reading, UK.
  • Purba, A.R., J.L. Noyer, L. Baudouin, X. Perrier, S. Hamon y P.J.L. Lagoda. 2000. A new aspect of genetic diversity of Indonesian oil alm (Elaeis guineensis Jacq.) revealed by isoenzime and AFLP markers and its consequences for breeding. Theor. Appl. Genet. (101), 956-961. Doi: https://doi.org/10.1007/s001220051567
  • Rey, L., P. Gómez, I. Ayala, W. Delgado y P. Rocha. 2004. Colecciones genéticas de palma de aceite Elaeis guineensis (Jacq.) y Elaeis oleifera (H.B.K.) de Cenipalma: Características de importancia para el sector palmicultor. Palmas 25(2), 39-48.
  • Rocha, P. 2003. Marcadores moleculares, una herramienta útil para la selección genética de palma de aceite. Palmas 24(2), 11-25.
  • Shah, F., O. Rashid, A.J. Simons y A. Dundson. 1994. The utility of RAPD markers for determination of genetic variation in oil palm (Elaeis guineensis). Theor. Appl. Genet. (89), 713-718. Doi: https://doi.org/10.1007/BF00223710
  • Shahin S., A.J. Shao, M.D. Strem, W. Phillips-Mora, D. Zhang, L.W. Meinhardt y B.A. Bailey. Combination of RNA seq and SNP nano fluidi carray reveals the center of genetic diversity of cacao pathogen Moniliophthora roreri in the upper Magdalena Valley of Colombia and its clonality. 2015. Frontiers Microbiol. Doi: https://doi.org/10.3389/fmicb.2015.00850
  • Suárez, L. 2005. Extracción y purificación del ADN de Moniliophthora roreri hongo que ataca el cacao, en Norte de Santander. Respuestas 10(2). Doi: https://doi.org/10.22463/0122820X.629
  • Suárez, L. 2006. Aislamiento e identificación de Moniliophthora roreri causante de la moniliasis en municipios del nororiente Colombiano. Respuestas 11(1). Doi: https://doi.org/10.22463/0122820X.623
  • Suárez, L. 2016. Identificación molecular de aislamientos de Moniliophthora roreri en huertos de cacao de Norte de Santander, Colombia. Acta Agron. 65(1), 51-57. Doi: https://doi.org/10.15446/acag.v65n1.47994
  • Suárez, L. y A. Rangel. 2013. Aislamiento de microorganismos para control biológico de Moniliophthora roreri. Acta Agron. 62(4), 370-378.
  • Tirado-Gallego, P.A., A. Lopera-Alvarez y L.A. Rios-Osorio. 2016. Estrategias de control de Moniliophthora roreri y Moniliophthora perniciosa en Theobroma cacao L.: revisión sistemática. Corpoica. Cienc. Tecnol. Agropec. 17(3), 417-430. Doi: https://doi.org/10.21930/rcta.vol17_num3_art:517
  • Tredway, L.P., J.F. White, B.S. Gaut, P.V. Reddy, M.D. Richardson y B.B. Clark. 1999. Philogenetic relationships within and between Epichloe and Neotyphodium endophytes as estimated by AFLP markers and rDNA sequences. Mycological Res. 103(12), 1593-1603. Doi: https://doi.org/10.1017/S0953756299008874
  • Tuquerres, H.L. 2016. Evaluación de cepas de Trichoderma spp. en el control de monilla (Moniliophthora roreri), en cacao (Theobroma cacao) in vitro y en campo en la provincia de Napo-Ecuador. Trabajo de grado. Universidad de las Fuerzas Armada - ESPE, Sangolquí, Ecuador.
  • Villamizar, R., J. Osma y O. Ortíz. 2016. Fungicidal effect of silver nanoparticles on toxigenic fungi in cocoa. Pesq. Agropec. Bras. 51(12), 1929-1936. Doi: https://doi.org/10.1590/s0100-204x2016001200003
  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper y M. Zabeau. 1995. AFLP: A New technique for DNA fingerprinting. Nucleic Acids Res. 23(21), 4407-4414. Doi: https://doi.org/10.1093/nar/23.21.4407

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.