Soil properties associated with West-Indian avocado decline in the agroforestry systems of Montes de María, Colombia
Abstract
The Montes de María (MM) region, a major producer of West Indian avocados in Colombia, has experienced a significant decline in avocado production over the past two decades. This decline has been linked to several biotic stressors, including Phytophthora cinnamomi Rands, termites, and ambrosia beetles, though these factors alone do not fully explain the spatial variability of tree decline across the region. This study aimed to assess the role of soil chemical and physical properties in exacerbating avocado decline in MM. Soil samples were collected from 33 avocado orchards with varying levels of decline. Principal Component Factor (PCF) analysis was used to identify the soil parameters most strongly associated with avocado decline. The analysis identified five principal components, accounting for 76.8% of the total variance in soil properties. Among these, PCF1, strongly associated with Ca, pH, and effective cation exchange capacity (ECEC), had a significant positive correlation with shoot dieback (SDB), indicating that avocado trees in soils with higher Ca and pH levels are more prone to decline, likely due to induced iron chlorosis under alkaline conditions. In contrast, PCF5, associated with phosphorus (P) and organic matter (OM), showed a strong negative correlation with SDB, suggesting that higher levels of P and OM may help reduce disease severity and slow its progression. These findings underscore the importance of soil management in mitigating avocado decline and highlight the need for integrated strategies to address both biotic and abiotic stressors.
Keywords
Persea americana Mill., Soil chemical-physical properties, Colombian Caribbean, Phytophthora cinnamomi Rands, shoot dieback
References
- Ababa, G. 2024. Pathogenic diversity, ecology, epidemiology, and management practices of the potato bacterial wilt (Ralstonia solanacearum) disease. Cogent Food Agric. 10(1), 2407953. Doi: https://doi.org/10.1080/23311932.2024.2407953
- Arcoverde, S.N.S., J.W. Cortez, N. Olszevski, A.M. Salviano, and V. Giongo. 2019. Multivariate analysis of chemical and physical attributes of quartzipsamments under different agricultural uses. Eng. Agri. 39(4), 457-465. Doi: https://doi.org/10.1590/1809-4430-eng.agric.v39n4p457-465/2019
- Bauman, D., C. Fortunel, G. Delhaye, Y. Malhi, L.A. Cernusak, L.P. Bentley, S.W. Rifai, J. Aguirre-Gutiérrez, I.O. Menor, O.L. Phillips, B.E. McNellis, M. Bradford, S.G.W. Laurance, M.F. Hutchinson, R. Dempsey, P.E. Santos-Andrade, H.R. Ninantay-Rivera, J.R.C. Paucar, and S.M. McMahon. 2022. Tropical tree mortality has increased with rising atmospheric water stress. Nature 608(7923), 528-533. Doi: https://doi.org/10.1038/s41586-022-04737-7
- Broadbent, P. and K.F. Baker. 1974. Behaviour of Phytophthora cinnamomi in soils suppressive and conducive to root rot. Aust. J. Agric. Res. 25(1), 121-137. Doi: https://doi.org/10.1071/AR9740121
- Burbano-Figueroa, O. 2019. West Indian avocado agroforestry systems in Montes de María (Colombia): a conceptual model of the production system. Rev. Chapingo Ser. Hortic. 25(2), 75-102. Doi: https://doi.org/10.5154/r.rchsh.2018.09.018
- Burbano-Figueroa, O., A. Arcila, A.M. Vásquez, F. Carrascal, K. Salazar Pertuz, M. Moreno-Moran, J. Romero-Ferrer, and J.A. Pulgarin. 2018. First report of Bionectria pseudochroleuca causing dieback and wilting on avocado in the Serrania de Perijá, Colombia. Plant Dis. 102(1), 238. Doi: https://doi.org/10.1094/PDIS-01-17-0010-PDN
- Buss, R.N., R.A. Silva, G.M. Siqueira, J.O.R. Leiva, O.C.C. Oliveira, and V.L. França. 2019. Spatial and multivariate analysis of soybean productivity and soil physical-chemical attributes. Rev. Bras. Eng. Agric. Ambient. 23(6), 446-453. Doi: https://doi.org/10.1590/1807-1929/agriambi.v23n6p446-453
- Cao, Y., Z. Shen, N. Zhang, X. Deng, L.S. Thomashow, I. Lidbury, H. Liu, R. Li, Q. Shen, and G.A. Kowalchuk. 2024. Phosphorus availability influences disease-suppressive soil microbiome through plant-microbe interactions. Microbiome 12(1), 185. Doi: https://doi.org/10.1186/s40168-024-01906-w
- Camarero, J.J., A. Gazol, G. Sangüesa‐Barreda, J. Oliva, and S.M. Vicente‐Serrano. 2015. To die or not to die: early warnings of tree dieback in response to a severe drought. J. Ecol. 103(1), 44-57. Doi: https://doi.org/10.1111/1365-2745.12295
- Chaudhary, P., A. Bhattacharjee, S. Khatri, R.C. Dalal, P.M. Kopittke, and S. Sharma. 2024. Delineating the soil physicochemical and microbiological factors conferring disease suppression in organic farms. Microbiol. Res. 289, 127880. Doi: https://doi.org/10.1016/j.micres.2024.127880
- Cherubin, M.R., D.L. Karlen, C.E.P. Cerri, A.L.C. Franco, C.A. Tormena, C.A. Davies, and C.C. Cerri. 2016. Soil quality indexing strategies for evaluating sugarcane expansion in Brazil. PLoS ONE 11(3), e0150860. Doi: https://doi.org/10.1371/journal.pone.0150860
- Ciesla, W. and E. Donaubauer. 1994. Decline and dieback of trees and forests. A global overview. FAO, Rome.
- Das, A.J., N.L. Stephenson, and K.P. Davis. 2016. Why do trees die? characterizing the drivers of background tree mortality. Ecology 97(10), 2616-2627. Doi: https://doi.org/10.1002/ecy.1497
- de Toledo, J.J., W.E. Magnusson, C.V. Castilho, and H.E.M. Nascimento. 2011. How much variation in tree mortality is predicted by soil and topography in Central Amazonia? For. Ecol. Manag. 262(3), 331-338. Doi: https://doi.org/10.1016/j.foreco.2011.03.039
- Etzold, S., K. Ziemiñska, B. Rohner, A. Bottero, A.K. Bose, N.K. Ruehr, A. Zingg, and A. Rigling. 2019. One century of forest monitoring data in Switzerland reveals species- and site-specific trends of climate-induced tree mortality. Front. Plant Sci. 10, 307. Doi: https://doi.org/10.3389/fpls.2019.00307
- Everitt, B.S., S. Landau, M. Leese, and D. Stahl. 2011. Cluster analysis. 5th ed. Wiley, London. Doi: https://doi.org/10.1002/9780470977811
- Fabrigar, L.R. and D.T. Wegener. 2012. Exploratory factor analysis. Oxford University Press, New York, NY. Doi: https://doi.org/10.1093/acprof:osobl/9780199734177.001.0001
- Gazol, A., J.J. Camarero, J.J. Jiménez, D. Moret-Fernández, M.V. López, G. Sangüesa-Barreda, and J.M. Igual. 2018. Beneath the canopy: Linking drought-induced forest die off and changes in soil properties. For. Ecol. Manag. 422, 294-302. Doi: https://doi.org/10.1016/j.foreco.2018.04.028
- Granja, F. and J.I. Covarrubias. 2018. Evaluation of acidifying nitrogen fertilizers in avocado trees with iron deficiency symptoms. J. Soil Sci. Plant Nutrit. 18(1), 157-172. Doi: https://doi.org/10.4067/S0718-95162018005000702
- Gregoriou, C., M. Papademetriou, and L. Christofides. 1983. Use of chelates for correcting iron chlorosis in avocados growing in calcareous soils in Cyprus. Calif. Avocado Soc. Yearb. 67, 115-122.
- Hair Jr., J.F., R.E. Anderson, R.L. Tatham, and W.C. Black. 1998. Multivariate data analysis. 5th ed. Prentice Hall, Upper Saddle River, NJ.
- Hammond, W.M., A.P. Williams, J.T. Abatzoglou, H.D. Adams, T. Klein, R. López, C. Sáenz-Romero, H. Hartmann, D.D. Breshears, and C.D. Allen. 2022. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nat. Commun. 13(1), 1761. Doi: https://doi.org/10.1038/s41467-022-29289-2
- Indarto, I., M. Mandala, and B.E. Cahyono. 2022. Classification of soil quality index in irrigated paddy fields: study in Jember, East Java, Indonesia. J. Geol. Geograph. Geoecol. 31(3), 460-468. Doi: https://doi.org/10.15421/112242
- Kadman, A. and E. Lahav. 1982. Experiments to correct iron deficiency in avocado trees. J. Plant Nutrit. 5(4-7), 961-966. Doi: https://doi.org/10.1080/01904168209363027
- Khaledian, Y., F. Kiani, S. Ebrahimi, E. Brevik, and J. Aitkenhead‐Peterson. 2016. Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degrad. Dev. 28(1), 128-141. Doi: https://doi.org/10.1002/ldr.2541
- Klimkowicz-Pawlas, A., A. Ukalska-Jaruga, and B. Smreczak. 2019. Soil quality index for agricultural areas under different levels of anthropopressure. Int. Agrophys. 33(4), 455-462. Doi: https://doi.org/10.31545/intagr/113349
- Larkin, R.P. 2015. Soil health paradigms and implications for disease management. Ann. Rev. Phytopathol. 53, 199-221. Doi: https://doi.org/10.1146/annurev-phyto-080614-120357
- Li, S., Y. Liu, J. Wang, L. Yang, S. Zhang, C. Xu, and W. Ding. 2017. Soil acidification aggravates the occurrence of bacterial wilt in South China. Front. Microbiol. 8, 703. Doi: https://doi.org/10.3389/fmicb.2017.00703
- Lima, C.E.P., J. Silva, Í.M.R. Guedes, N.R. Madeira, and M.R. Fontenelle. 2017. Management systems effect on fertility indicators of a Ferralsol with vegetable crops, as determined by different statistical tools. Rev. Bras. Ciênc. Solo 41, e0160468. Doi: https://doi.org/10.1590/18069657rbcs20160468
- Malo, S.E. 1976. Mineral nutrition of avocados. pp. 42-46. In: Sauls, J.W., R.L. Phillips, and L.K. Jackson (eds.). Proc. 1st International Tropical Fruit Short Course. Institute of Food and Agricultural Services, University of Florida, Gainesville, FL.
- Manion, P.D. 1991. Tree disease concepts. 2nd ed. Prentice Hall, Englewood Cliffs, NJ.
- MinAgricultura, Ministerio de Agricultura y Desarrollo Rural Colombia. 2024. Agronet: área, producción y rendimiento nacional por cultivo - aguacate. In: Unidad de Planificación Rural Agropecuaria – UPRA, https://www.agronet.gov.co/estadistica/paginas/home.aspx?cod=1 ; consulted: June, 2024.
- Mukherjee, A. and R. Lal. 2014. Comparison of soil quality index using three methods. PLoS ONE 9(8), e105981. Doi: https://doi.org/10.1371/journal.pone.0105981
- Naseri, B. and L. Tabande. 2017. Patterns of Fusarium wilt epidemics and bean production determined according to a large-scale dataset from agro-ecosystems. Rhizosphere 3(Part 1), 100-104. Doi: https://doi.org/10.1016/j.rhisph.2017.02.002
- Oliva, J., J. Stenlid, and J. Martínez-Vilalta. 2014. The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality. New Phytol. 203(4), 1028-1035. Doi: https://doi.org/10.1111/nph.12857
- Osorio-Almanza, L., O. Burbano-Figueroa, A.M. Arcila-C., A.M. Vásquez-B., F. Carrascal-Perez, and J. Romero-Ferrer. 2017. Distribución espacial del riesgo potencial de marchitamiento del aguacate causado por Phytophthora cinnamomi en la subregión de Montes de María, Colombia. Rev. Colomb. Cienc. Hortic. 11(2), 273-285. Doi: https://doi.org/10.17584/rcch.2017v11i2.7329
- Pituch, K.A. and J.P. Stevens. 2015. Applied multivariate statistics for the social sciences: analyses with SAS and IBM’s SPSS. 6th ed. Routledge, New York, NY. Doi: https://doi.org/10.4324/9781315814919
- Raiesi, F. 2017. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecol. Indic. 75, 307-320. Doi: https://doi.org/10.1016/j.ecolind.2017.01.020
- Rangel‐Peraza, J.G., E. Padilla-Gasca, R. López-Corrales, J.R. Medina, Y. Bustos-Terrones, L.E. Amábilis-Sosa, A.E. Rodriguez-Mata, and T. Osuna-Enciso. 2017. Robust soil quality index for tropical soils influenced by agricultural activities. J. Agric. Chem. Environ. 6(4), 199-221. Doi: https://doi.org/10.4236/jacen.2017.64014
- Salazar-García, S. 1999. Iron nutrition and deficiency: a review with emphasis in avocado (Persea americana Mill.). Rev. Chapingo Ser. Hortic. 5(2), 67-76.
- Sano, S., H. Kongo, and T. Uchiyama. 2015. Characteristics of man-made soils of greenhouse fields in urban areas, Osaka Prefecture, Japan. Soil Sci. Plant Nutr. 61(Sup. 1), 123-134. Doi: https://doi.org/10.1080/00380768.2015.1050606
- Scarlett, K., S. Denman, D.R. Clark, J. Forster, E. Vanguelova, N. Brown, and C. Whitby. 2021. Relationships between nitrogen cycling microbial community abundance and composition reveal the indirect effect of soil pH on oak decline. ISME J. 15(3), 623-635. Doi: https://doi.org/10.1038/s41396-020-00801-0
- Schinas, S. and D.L. Rowell. 1977. Lime-induced chlorosis. J. Soil Sci. 28(2), 351-368. Doi: https://doi.org/10.1111/j.1365-2389.1977.tb02243.x
- Sinclair, W.A. and G.W. Hudler. 1988. Tree declines: four concepts of causality. Arboric. Urban For. 14(2), 29-35. Doi: https://doi.org/10.48044/jauf.1988.009
- Sterne, R.E., M.R. Kaufmann, and G.A. Zentmyer. 1978. Effect of phytophthora root rot on water relations of avocado: Interpretation with a water transport model. Phytopathology 68(4), 595. Doi: https://doi.org/10.1094/Phyto-68-595
- Sterne, R.E., G.A. Zentmyer, and M.R. Kaufmann. 1977. The influence of matric potential, soil texture, and soil amendment on root disease caused by Phytophthora cinnamomi. Phytopathology 67, 1495-1500. Doi: https://doi.org/10.1094/Phyto-67-1495
- Tabachnick, B.G. and L.S. Fidell. 2013. Using multivariate statistics. 6th ed. Pearson, Boston, MA.
- Vaca, R., P. Del Águila, G. Yañez-Ocampo, J.A. Lugo, and N. De la Portilla-López. 2023. Soil quality assessment in response to water erosion and mining activity. Agriculture 13(7), 1380. Doi: https://doi.org/10.3390/agriculture13071380
- Vasu, D., S.K. Singh, S.K. Ray, V.P. Duraisami, P. Tiwary, P. Chandran, A.M. Nimkar, and S.G. Anantwar. 2016. Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma 282, 70-79. Doi: https://doi.org/10.1016/j.geoderma.2016.07.010
- Whyte, G., K. Howard, G.E.St.J. Hardy, and T.I. Burgess. 2016. The tree decline recovery seesaw; a conceptual model of the decline and recovery of drought-stressed plantation trees. For. Ecol. Manag. 370, 102-113. Doi: https://doi.org/10.1016/j.foreco.2016.03.041
- Yabrudy, J. 2012. El aguacate en Colombia: Estudio de caso de los Montes de María, en el Caribe colombiano. Economía Regional (171). Banco de la República, Cartagena de Indias, Colombia. Doi: https://doi.org/10.32468/dtseru.171
- Yadav, M.B.N., P.L. Patil, and M. Hebbara. 2023. Comparative studies on soil quality index estimation of a hilly-zone sub-watershed in Karnataka. Sustainability 15(24), 16576. Doi: https://doi.org/10.3390/su152416576