Skip to main navigation menu Skip to main content Skip to site footer

Spatial distribution of the potential risk for avocado wilting disease, caused by <i>Phytophthora cinnamomi</i> in the subregion of Montes de Maria, Colombia

Cepa 9.1 86.5 de Phytophthora cinnamomi aislada a partir de raíces de árboles exhibiendo síntomas de marchitamiento en cultivos de aguacate en Montes de María. Foto: K. Salazar P.

Abstract

Avocado wilting or root rot, caused by the oomycete Phytophthora cinnamomi Rands, is the most limiting disease of avocado crops around the world. Montes de Maria (MM) is the main producer region of avocado in the Colombian Caribbean. Avocado producing areas in MM are decreasing in an inverse trend compared with the increasing hectarage world and nation-wide. Decreasing hectarage in MM is associated with phytosanitary problems, specifically the avocado wilting caused by P. cinnamomi. Climate is one of the main abiotic factors determining spatial distribution of species. For plant-pathogens, environmental conditions determine host-colonization. Under this scenario, the aim of this study was to estimate the spatial distribution of the avocado root-rot risk in the subregion of Montes de Maria, Colombia. This estimation was based on data for the presence of shoot dieback, a characteristic, easily identifiable symptom of root rot caused by P. cinnamomi. This symptom exhibits a high correlation with disease incidence and severity. A Maxent model was used to estimate the spatial distribution of the risk, showing a high statistical validation (test AUC>0.9). This model identified areas with a high risk for occurrence of branch dieback and, consequently, root rot. Areas with a higher risk of root rot were found at the higher altitudes, with lower temperatures in the coldest trimester (BIO11 ~22°C), and in the warmest one (BIO10 ~24°C), with higher rainfall during the dry season (BIO17 - BIO14).

Keywords

Root rot, Maxent, Colombian Caribbean, Bioclim, shoot dieback.

PDF (Español)

References

  • Aubrey, Z.G. 1980. Phytophthora cinnamomi and the diseases it causes. Amer. Phytopathol. Soc. Monogr. 10, 1-96.
  • Bogosian V., E. Hellgren, M. Sears y R. Moody. 2012. High-resolution niche models via a correlative approach: Comparing and combining correlative and process-based information. Ecol. Model. 337-238, 63-73. Doi: https://doi.org/10.1016/j.ecolmodel.2012.04.017
  • Burns, R.M., J.H. Miner, C.D. Gustafson, G.A. Zentmyer y W.A. Thorn. 1960. Correlation of soil series and avocado root rot damage in the Fallbrook area. Calif. Avoc. Soc. 44, 110-13.
  • Campbell, C.L. y D.A. Neher. 1994. Estimating disease severity and incidence. pp. 117-47. En: Campbell, L. y M. Benson (eds.). Epidemiology and management of root diseases. Springer Verlag, Berlin, Heidelberg, Alemania. Doi: https://doi.org/10.1007/978-3-642-85063-9_5
  • Castillo R., C.J. 2008. Modelamiento de la distribución de los nichos adecuados para la invasión biológica del retamo espinoso (Ilex europaeus) en la cuenca alta del Río Bogotá, vulnerabilidad y escenarios futuros. Tesis de doctorado. Pontificia Universidad Javeriana, Bogotá, Colombia.
  • Chen, H., P.L. Morrell, V. Ashworth, M. de la Cruz y M.T. Clegg. 2009. Tracing the geographic origins of major avocado cultivars. J. Hered. 100(1), 56-65. Doi: https://doi.org/10.1093/jhered/esn068
  • Chinchilla, M., R. Mata y A. Alvarado. 2011. Andisoles, Inceptisoles y Entisoles de la subcuenca del río Pirrís, región de los Santos, Talamanca, Costa Rica. Agron. Costarricense 35(1), 83-107.
  • Coffey, M.D. 1987. Phytophthora root rot of avocado: an integrated approach to control in California. Plant Dis. 71(11), 1046-1052.
  • DANE (Departamento Administrativo Nacional de Estadística). 2015. El cultivo del aguacate (Persea americana Miller), fruta de extraordinarias propiedades alimenticias, curativas e industriales (Primera parte). Boletín Mensual Insumos y Factores Asociados a la Producción Agropecuaria 40. Bogotá, Colombia.
  • Darvas, J.M., J.C. Toerien y D.L. Milne. 1983. Injection of established avocado trees for the effective control of Phytophthora root rot. SAAGA 6, 76-77.
  • Darvas J.M., J.C. Toerien y D.L. Milne. 1984. Control of avocado root rot by trunk injection with phosethyl-A1. Plant Dis. 68, 691-693.
  • Erwin D.C. y O.K. Ribeiro. 1996. Phytophthora diseases worldwide. American Phytopathological Society Press, St. Paul, MN, USA.
  • Gabor, B.K. 1990. Quantitative analysis of the resistance to Phytophthora cinnamomi in five avocado rootstocks under greenhouse conditions. Plant Dis. 74(11), 882-885. Doi: https://doi.org/10.1094/PD-74-0882
  • Galdino T.V. da S., S. Kumar, L.S.S. Oliveira, A.C. Alfenas, L.G. Neven, A.M. Al-Sadi y M. Picanço .2016. Mapping global potential risk of mango sudden decline disease caused by Ceratocystis fimbriata. PLoS ONE 11(7). Doi: https://doi.org/10.1371/journal.pone.0159450
  • Gallo-Llobet, L., A. Baños-Atance y A. Rodríguez-Pérez. 2006. Selección de patrones de aguacate de raza antillana tolerante-resistentes a Phytophthora cinnamomi para el control de la podredumbre de raíz. p. 238. Libro de Resúmenes, XIII Congreso de la Sociedad Española de Fitopatología, Murcia, España.
  • Guevara V.M., M. Vertel M., A. Castellar M. y P. Blanco T. 2016. Distribución geográfica de especies de garrapatas infectadas con Babesia de zonas rurales del departamento de Sucre, Colombia. XXVI Simposio Internacional de Estadística, Sincelejo, Colombia.
  • Hijmans R.J., S. Cameron y J. Parra. 2016. WorldClim. En: http://www.worldclim.org/version1; consulta: febrero de 2017.
  • Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones y A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15), 1965-78. Doi: https://doi.org/10.1002/joc.1276
  • Jiménez-Valverde, A., J.M. Lobo y J. Hortal. 2008. Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions 14(6), 885-90. Doi: https://doi.org/10.1111/j.1472-4642.2008.00496.x
  • Jiménez-Valverde, A., A.T. Peterson, J. Soberón, J.M. Overton, P. Aragón y J.M. Lobo. 2011. Use of niche models in invasive species risk assessments. Biol. Invasions 13(12), 2785-97. Doi: https://doi.org/10.1007/s10530-011-9963-4
  • Kottek, M., J. Grieser, C. Beck, B. Rudolph y F. Rubel. 2006. World Map of the Köppen-Geiger climate classification updated. Meteor. Zeitschr. 15(3), 259-63. Doi: https://doi.org/10.1127/0941-2948/2006/0130
  • Kumar, S., L.G. Neven y W.L. Yee. 2014. Evaluating correlative and mechanistic niche models for assessing the risk of pest establishment. Ecosphere 5(7), 1-23. Doi: https://doi.org/10.1890/ES14-00050.1
  • La Manna, L., S.D. Matteucci y T. Kitzberger. 2012. Modelling Phytophthora disease risk in Austrocedrus chilensis forests of Patagonia. Eur. J. For. Res. 131(2), 323-337. Doi: https://doi.org/10.1007/s10342-011-0503-7
  • Manuel, S., H.C. Williams y S.J. Ormerod. 2002. Evaluating presence-absence models in ecology: the need to account for prevalence. J. Appl. Ecol. 38(5), 921-931. Doi: https://doi.org/10.1046/j.1365-2664.2001.00647.x
  • Pavas, T., C.A. 2015. Organización de cadena productiva del aguacate. Consejo Nacional del Aguacate, Ministerio de Agricultura, Bogotá, Colombia.
  • Pegg, K.G., L.M. Coates, L. Korsten y R.M. Hardig. 2002. Foliar, fruit and soilborne diseases. 2nd ed. pp. 299-339. En: Schaffer, B., B.N. Wolstenholme y A.W. Whiley (eds.). The avocado: Botany, production and uses. Wallingford, Oxon, UK. Doi: https://doi.org/10.1079/9780851993577.0299
  • Pérez-Jiménez, R. 2008. Significant avocado diseases caused by fungi and oomycetes. Eur. J. Plant Sci. Biotechnol. 2(1), 1-24.
  • Phillip, S.J., R.P. Anderson y R.E. Schapire. 2005. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231-259.
  • Reeves, J.R. 1975. Behaviour of Phytophthora cinnamomi Rands in different soils and water regimes. Soil Biol. Biochem. 7(1), 19-24. Doi: https://doi.org/10.1016/0038-0717(75)90025-5
  • Rubel F. y M. Kottek. 2010. Observed and projected climate shifts 1901–2100 depicted by world maps of the Koppen-Geiger climate classification. Meteorol. Zeitschr. 19(2), 135-41. Doi: https://doi.org/10.1127/0941-2948/2010/0430
  • Shepherd, C.J. y B.H. Pratt. 1974. Temperature-growth relations and genetic diversity of A2 mating-type isolates of Phytophthora cinnamomi in Australia. Aust. J. Bot. 22(2), 231-49. Doi: https://doi.org/10.1071/BT9740231
  • Tamayo, A., O. Córdoba y M.E. Londoño. 2008. Tecnología para el cultivo del aguacate. Vol. 5. Corpoica, Río Negro, Colombia.
  • Téllez, A. 2015. Sistematización de la experiencia de Colombia responde en la zona de consolidación territorial de los Montes de María. Funicar, Cartagena, Colombia.
  • Vega, J. 2012. El aguacate en Colombia: Estudio de caso de los Montes de María, en el Caribe colombiano. Banco de República - Economía Regional 171, 1-145.
  • Zentmyer, G.A. 1981. The effect of temperature on growth and pathogenesis of Phytophthora cinnamomi and on growth of its avocado host. Phytopathology 71, 925-28. Doi: https://doi.org/10.1094/Phyto-71-925
  • Zentmyer, G.A. 1984. Avocado diseases. Int. J. Pest Manag. 30(4), 388-400. Doi: https://doi.org/10.1080/09670878409370915
  • Zentmyer, G.A., J.V. Leary, L.J. Klure y G.L. Grantham. 1976. Variability in growth of Phytophthora cinnamomi in relation to temperature. Phytopathology 66, 982-986. Doi: https://doi.org/10.1094/Phyto-66-982
  • Zentmyer, G.A. y S.M. Mircetich. 1967. Saprophytism and persistence in soil by Phytophthora cinnamomi. Phytopathology 51, 117-24.

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.