Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Scopping review: uso de biofertilizantes y sustancias húmicas en Phaseolus vulgaris (Fabaceae) para zonas secas

Phaseolus vulgaris pods genotype SMG22. Photo: L.L. Aguirre-Pérez

Resumen

El cultivo de frijol común en zonas secas se ve afectado por el cambio climático y la baja disponibilidad de nutrientes que limita su rendimiento. El objetivo de esta revisión fue analizar el alcance de la literatura científica sobre el uso de inoculantes basados en rizobacterias promotoras de crecimiento vegetal (PGPR) y sustancias húmicas (SH) en el manejo agronómico sostenible del cultivo de frijol y la tolerancia a la sequía, para la generación de recomendaciones aplicables a la producción del cultivo en zonas secas del trópico bajo. Se realizó una revisión exploratoria sobre el uso de PGPR y SH en frijol, desde las primeras publicaciones hasta diciembre de 2022 en las bases de datos: Science direct, Scielo, Springerlink, Scopus, Pubmed y Proquest. La co-inoculacion de rizobios con otras PGPR fue la técnica más frecuente en los artículos revisados. Sin embargo, la aplicación conjunta con SH permite mayor tolerancia al estrés hídrico ocasionado por la sequía. Las especies de rizobios más reportadas como eficientes fueron Rhizobium tropici, Rhizobium etli y la cepa CIAT 899 (R. tropici) es la más útil en formulaciones de inoculantes para frijol común en condiciones de sequía en Brasil. In Colombia, solo se encontró un producto registrado a base de Rhizobium phaseoli para frijol, aunque no existen reportes de evaluación de esta cepa bajo condiciones de estrés por sequía.

Palabras clave

Agricultura sostenible, Fertilización biológica, Sustancias húmicas, Aplicación conjunta, Tolerancia a sequía

PDF (English)

Citas

  1. Abdulrahman, B.O., M. Bala, and O.M. Bello. 2021. Bioactive compounds of black bean (Phaseolus vulgaris L.). pp. 623-641. In: Murthy, H.N. and K.Y. Paek (eds.). Bioactive compounds in underutilized vegetables and legumes. Reference Series in Phytochemistry. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-030-57415-4_38
  2. AlAli, H.A., A. Khalifa, and M. Almalki. 2021. Plant growth-promoting rhizobacteria from Ocimum basilicum improve growth of Phaseolus vulgaris and Abelmoschus esculentus. South Afr. J. Bot. 139, 200-209. Doi: https://doi.org/10.1016/j.sajb.2021.02.019
  3. Alinia, M., S.A. Kazemeini, A. Dadkhodaie, M. Sepehri, V.A.J. Mahjenabadi, S.F. Amjad, P. Poczai, D. El-Ghareeb, M.A. Bassouny, and A.A. Abdelhafez. 2022. Co-application of ACC deaminase-producing rhizobial bacteria and melatonin improves salt tolerance in common bean (Phaseolus vulgaris L.) through ion homeostasis. Sci. Rep. 12, 22105. Doi: https://doi.org/10.1038/s41598-022-26084-3
  4. Aragao, A. and E. Contini. 2021b. O agro no brasil e no mundo: uma síntese do período de 2000 a 2020. In: Embrapa, https://www.embrapa.br/documents/10180/62618376/O+AGRO+NO+BRASIL+E+NO+MUNDO.pdf/41e20155-5cd9-f4ad-7119-945e147396cb; consulted: May, 2023.
  5. Aserse, A.A., D. Markos, G. Getachew, M. Yli-Halla, and K. Lindström. 2020. Rhizobial inoculation improves drought tolerance, biomass and grain yields of common bean (Phaseolus vulgaris L.) and soybean (Glycine max L.) at Halaba and Boricha in Southern Ethiopia. Arch. Agron. Soil Sci. 66(4), 488-501. Doi: https://doi.org/10.1080/03650340.2019.1624724
  6. Ayala, F., Y. Maya, and E. Troyo. 2018. Almacenamiento y flujo de carbono en suelos áridos como servicio ambiental: un ejemplo en el noroeste de México. Terra Latinoam. 36(2), 93-104. Doi: https://doi.org/10.28940/terra.v36i2.334
  7. Baweja, P., S. Kumar, and G. Kumar. 2020. Fertilizers and pesticides: their impact on soil health and environment. pp. 265-285 In: Giri, B. and A. Varma (eds.). 2020. Soil health. Springer, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-030-44364-1_15
  8. Brazil. 2011. Instrução Normativa SDA Nº 13, de 24 de março de 2011. Aprova as normas sobre especificações, garantias, registro, embalagem e rotulagem dos inoculantes destinados à agricultura, bem como as relações dos micro-organismos autorizados e recomendados para produção de inoculantes no Brasil, na forma dos Anexos I, II e III, desta Instrução Normativa. Diário Oficial da União 58, 1-24.
  9. Burbano-Erazo, E., R.I. León-Pacheco, C.C. Cordero-Cordero, F. López-Hernández, A.J. Cortés, and A.P. Tofiño-Rivera. 2021. Multi-environment yield components in advanced common bean (Phaseolus vulgaris L.) tepary bean (P. acutifolius A. Gray) interspecific lines for heat and drought tolerance. Agronomy 11(10), 1978. Doi: https://doi.org/10.3390/agronomy11101978
  10. Calero-Hurtado, A., Y. Pérez, E. Quintero, D. Olivera, and K. Peña. 2019. Efecto de la aplicación asociada entre Rhizobium leguminosarum y microorganismos eficientes sobre la producción del fríjol común. Cienc. Tecnol. Agropec. 20(2), 295-308. Doi: https://doi.org/10.21930/rcta.vol20_num2_art:1460
  11. Camacho, M., C. Santamaria, F. Temprano, D.N. Rodriguez-Navarro, and A. Daza. 2001. Co-inoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L. Can. J. Microbiol. 47(11), 1058-1062. Doi: https://doi.org/10.1139/w01-107
  12. Canellas, L.P. and F.L. Olivares. 2014. Physiological responses to humic substances as plant growth promoter. Chem. Biol. Technol. Agric. 1, 3. Doi: https://doi.org/10.1186/2196-5641-1-3
  13. Canellas, L.-P., S.-F. Silva, D.C. Olk, and F.L. Olivares. 2015. Foliar application of plant growth-promoting bacteria and humic acid increase maize yields. J. Food Agric. Environ. 13(1), 146-153.
  14. Cantaro-Segura, H., A. Huaringa-Joaquín, and D. Zúñiga-Davila. 2019. Efectividad simbiótica de dos cepas de Rhizobium sp. en cuatro variedades de frijol (Phaseolus vulgaris L.) en Perú. Idesia 37(4), 73-81. Doi: https://doi.org/10.4067/S0718-34292019000400073
  15. Chaves-Barrantes, N.-F., J.A. Polanía, C.G. Muñoz-Perea, I.M. Rao, and S.-E. Beebe. 2018. Caracterización fenotípica por resistencia a sequía terminal de germoplasma de frijol común. Agron. Mesoam. 29(1), 1-17. Doi: https://doi.org/10.15517/ma.v29i1.27618
  16. Chen, Y. and T. Aviad. 1990. Effects of humic substances on plant growth. pp. 161-186. In: Maccarthy, P., C.E. Clapp, R.L. Malcolm, and P.R. Bloom (eds.). Humic substances in soils and crop science: selected readings. Soil Science Society of America, Madison, WI. Doi: https://doi.org/10.2136/1990.humicsubstances.c7
  17. Colás, A., R. Torres, R. Cupull, A. Rodríguez, M. Fauvart, J. Michiels, and J. Vanderleyden. 2014. Effects of co-inoculation of native Rhizobium and Pseudomonas strains on growth parameters and yield of two contrasting Phaseolus vulgaris L. genotypes under Cuban soil conditions. Eur. J. Soil Biol. 62, 105-112. Doi: https://doi.org/10.1016/j.ejsobi.2014.03.004
  18. Colás-Sánchez, A., B. Díaz-Pérez, A. Rodríguez-Urrutia, S. Gatorno-Muñóz, and O. Rodríguez. 2018. Efecto de la biofertilización en la morfo fisiología y rendimiento del frijol común (Phaseolus vulgaris L.). Ctro. Agr. 45(4), 34-42.
  19. Dardanelli, M.S., F.-J. De Cordoba, M.R. Espuny, M.A. Rodríguez, M.E. Soria, A.M. Gil, Y. Okon, and M. Megías. 2008. Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol. Biochem. 40(11), 2713-2721. Doi: https://doi.org/10.1016/j.soilbio.2008.06.016
  20. Dardanelli, M.S., F.J.F. Córdoba, J. Estévez, R. Contreras, M.T. Cubo, M.A. Rodríguez-Carvajal, A.M. Gil-Serrano, F.J. López-Baena, R. Bellogín, H. Manyani, F.J. Ollero, and M. Megías. 2012. Changes in flavonoids secreted by Phaseolus vulgaris roots in the presence of salt and the plant growth-promoting rhizobacterium Chryseobacterium balustinum. Appl. Soil Ecol. 57, 31-38. Doi: https://doi.org/10.1016/j.apsoil.2012.01.005
  21. De Ron, A.M., V.K. Kalavacharla, S. Álvarez-García, P.A. Casquero, G. Carro-Huelga, S. Gutiérrez, A. Lorenzana, S. Mayo-Prieto, A. Rodríguez-González, V. Suárez-Villanueva, A.P. Rodiño, J.S. Beaver, T. Porch, M.Z. Galván, M.C.G. Vidigal, M. Dworkin, A. Bedmar-Villanueva, and L. De La Rosa. 2019. Common bean genetics, breeding, and genomics for adaptation to changing to new agri-environmental conditions. pp. 1-106. In: Kole, C. (ed.). Genomic designing of climate-smart pulse crops. Springer, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-319-96932-9_1
  22. Debouck, D.G. 2021. Phaseolus beans (Leguminosae, Phaseoleae): a checklist and notes on their taxonomy and ecology. J. Bot. Res. Inst. Texas 15(1), 73-111. Doi: https://doi.org/10.17348/jbrit.v15.i1.1052
  23. Debouck, D.G. and R. Hidalgo. 1985. Morfología de la planta de frijol común. pp. 7-41. In: López, M., F.O. Fernández, and A. van Schoonhoven (eds.). Frijol: Investigación y producción. Programa de las Naciones Unidas (PNUD); Centro Internacional de Agricultura Tropical (CIAT), Santiago de Cali, Colombia.
  24. Diez-Mendez, A., E. Menéndez, P. García-Fraile, L. Celador-Lera, R. Rivas, and P.-F. Mateos. 2015. Rhizobium cellulosilyticum as a co-inoculant enhances Phaseolus vulgaris grain yield under greenhouse conditions. Symbiosis 67(1-3), 135-141. Doi: https://doi.org/10.1007/s13199-015-0372-9
  25. Dobbss, L.B., L.P. Canellas, F.L. Olivares, N.O. Aguiar, L.E.P. Peres, M. Azevedo, R. Spaccini, and A.R. Facanha. 2010. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth. J. Agric. Food Chem. 58(6), 3681-3688. Doi: https://doi.org/10.1021/jf904385c
  26. Embrapa. 2021a. Brasil cria Dia da Bioproteção para estimular práticas sustentáveis na agricultura. In: https://www.embrapa.br/en/busca-de-noticias/-/noticia/65063714/brasil-cria-dia-da-bioprotecao-para-estimular-praticas-sustentaveis-na-agricultura; consulted: May, 2023.
  27. Embrapa. 2021b. Embrapa offers solutions for sustainable agriculture at COP26. In: https://www.embrapa.br/en/busca-de-noticias/-/noticia/65963885/embrapa-apresenta-solucoes-para-agricultura-sustentavel-na-cop26; consulted: May, 2023.
  28. Façanha, A.R., A.L.O. Façanha, F.L. Olivares, F. Guridi, G.D. Santos, A.C. Velloso, V.M. Rumjanek, F. Brasil, J. Schripsema, R. Braz-Filho, A.A. Oliveira, and L.-P. Canellas. 2002. Bioatividade de ácidos húmicos: efeito sobre o desenvolvimento radicular e sobre a bomba de prótons da membrana plasmática. Pesq. Agropec. Bras. 37(9), 1301-1310. Doi: https://doi.org/10.1590/S0100-204X2002000900014
  29. FAO. 2021. FAOSTAT: Crops and livestock products. In: https://www.fao.org/faostat/es/#data/QCL; consulted: January, 2023.
  30. Ferreira, L.V.M., F. Carvalho, J.F.C. Andrade, and F.M.S. Moreira. 2018. Growth promotion of common bean and genetic diversity of bacteria from Amazon pastureland. Sci. Agric. 75(6), 461-469. Doi: https://doi.org/10.1590/1678-992x-2017-0049
  31. Figueiredo, M.V.B., H.A. Burity, C.R. Martínez, and C.P. Chanway. 2008. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl. Soil Ecol. 40(1), 182-188. Doi: https://doi.org/10.1016/j.apsoil.2008.04.005
  32. Figueiredo, M.V.B., C.R. Martinez, H.A. Burity, and C.P. Chanway. 2008. Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J. Microbiol. Biotechnol. 24(7), 1187-1193. Doi: https://doi.org/10.1007/s11274-007-9591-4
  33. Franco, L.M. 2017. Comportamiento de la materia orgánica y plaguicidas en un suelo agrícola sometido a sequía severa. Efecto en las propiedades químicas y biológicas. PhD thesis. Universidad de Sevilla, Sevilla, Spain.
  34. Franzini, V.I., R. Azcón, F.L. Méndes, and R. Aroca. 2013. Different interaction among Glomus and Rhizobium species on Phaseolus vulgaris and Zea mays plant growth, physiology and symbiotic development under moderate drought stress conditions. Plant Growth Reg. 70(3), 265-273. Doi: https://doi.org/10.1007/s10725-013-9798-3
  35. Gomes, D.F., L.D. Tullio, P. Del Cerro, A.S. Nakatani, A.A.P. Rolla-Santos, A. Gil-Serrano, M. Megías, F.J. Ollero, and M. Hungria. 2019. Regulation of hsnT, nodF and nodE genes in Rhizobium tropici CIAT 899 and their roles in the synthesis of nod factors and in the symbiosis. Microbiology 165(9), 990-1000. Doi: https://doi.org/10.1099/mic.0.000824
  36. Guridi-Izquierdo, F., A. Calderín-García, R.L. Louro-Berbara, D. Martínez-Balmori, and M. Rosquete-Bassó. 2017. Los ácidos húmicos de vermicompost protegen a plantas de arroz (Oryza sativa L.) contra un estrés hídrico posterior. Cult. Trop. 38(2), 53-60.
  37. Hidalgo, J.E.M., C.C. Ramos, P.B. Lezama, P. Chuna, and M.E. Chaman. 2019. Coinoculación de Rhizophagus irregularis y Rhizobium sp. en Phaseolus vulgaris L. var. canario (Fabaceae) "frijol canario”. Arnaldoa 26(3), 991-1006.
  38. Hungria, M., I.C. Mendes, and F.M. Mercante. 2013b. Tecnologia de fixação biológica do nitrogênio com o feijoeiro: viabilidade em pequenas propriedades familiares e em propriedades tecnificadas. Embrapa Soja, Brasilia.
  39. Hungria, M., M.A. Nogueira, and R.S. Araujo. 2013a. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol. Fert. Soils 49(7), 791-801. Doi: https://doi.org/10.1007/s00374-012-0771-5
  40. Ibrahim, E.A. and W.A. Ramadan. 2015. Effect of zinc foliar spray alone and combined with humic acid or/and chitosan on growth, nutrient elements content and yield of dry bean (Phaseolus vulgaris L.) plants sown at different dates. Sci. Hort. 184, 101-105. Doi: https://doi.org/10.1016/j.scienta.2014.11.010
  41. ICA. 2023. Productos bioinsumos registrados. In: https://www.ica.gov.co/areas/agricola/servicios/fertilizantes-y-bio-insumos-agricolas/listado-de-bioinsumos/2023/6-bd_productos-bioinsumos_19-de-abril-de-2023-1.aspx; consulted: May, 2023.
  42. Jiménez, O.R. 2019. Common bean (Phaseolus vulgaris L.) breeding. pp. 151-200. In: Al-Khayri, J., S. Jain, and D. Johnson (eds.). Advances in plant breeding strategies: legumes. Springer, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-030-23400-3_5
  43. Kiran, S., G.B. Furtana, M. Talhouni, and Ş.Ş. Ellialtioğlu. 2019. Drought stress mitigation with humic acid in two Cucumis melo L. genotypes differ in their drought tolerance. Bragantia 78, 490-497. Doi: https://doi.org/10.1590/1678-4499.20190057
  44. Korir, H., N.W. Mungai, M. Thuita, Y. Hamba, and C. Masso. 2017. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front. Plant Sci. 8, 141. Doi: https://doi.org/10.3389/fpls.2017.00141
  45. Kumar, V., P. Kumar, and A. Khan. 2020. Optimization of PGPR and silicon fertilization using response surface methodology for enhanced growth, yield and biochemical parameters of French bean (Phaseolus vulgaris L.) under saline stress. Biocatal. Agric. Biotechnol. 23, 101463. Doi: https://doi.org/10.1016/j.bcab.2019.101463
  46. Kumar, P., P. Pandey, R.C. Dubey, and D.K. Maheshwari. 2016. Bacteria consortium optimization improves nutrient uptake, nodulation, disease suppression and growth of the common bean (Phaseolus vulgaris) in both pot and field studies. Rhizosphere 2, 13-23. Doi: https://doi.org/10.1016/j.rhisph.2016.09.002
  47. Lakshmanan, V., P. Ray, and K.D. Craven. 2017. Toward a resilient, functional microbiome: drought tolerance-alleviating microbes for sustainable agriculture. pp. 69-84. In: Sunkar, R. (ed.). Plant stress tolerance. Methods in molecular biology. Vol 1631. Humana Press, New York, NY. Doi: https://doi.org/10.1007/978-1-4939-7136-7_4
  48. Lastochkina, O., S. Aliniaeifard, D. Garshina, S. Garipova, L. Pusenkova, C. Allagulova, and M. Sobhani. 2021. Seed priming with endophytic Bacillus subtilis strain-specifically improves growth of Phaseolus vulgaris plants under normal and salinity conditions and exerts anti-stress effect through induced lignin deposition in roots and decreased oxidative and osmotic damages. J. Plant Physiol. 263, 153462. Doi: https://doi.org/10.1016/j.jplph.2021.153462
  49. Leite, R.A., L.C. Martins, L.V.S.F. Ferreira, E.S. Barbosa, B.J.R. Alves, J.E. Zilli, A.P. Araújo, and E. C. Jesus. 2022. Co-inoculation of Rhizobium and Bradyrhizobium promotes growth and yield of common beans. Appl. Soil Ecol. 172, 104356. Doi: https://doi.org/10.1016/j.apsoil.2021.104356
  50. Machiani, M.A., E. Rezaei-Chiyaneh, A. Javanmard, F. Maggi, and M.R. Morshedloo. 2019. Evaluation of common bean (Phaseolus vulgaris L.) seed yield and quali-quantitative production of the essential oils from fennel (Foeniculum vulgare Mill.) and dragonhead (Dracocephalum moldavica L.) in intercropping system under humic acid application. J. Clean. Prod. 235, 112-122. Doi: https://doi.org/10.1016/j.jclepro.2019.06.241
  51. Martins, S.J., F.H.V. Medeiros, R.M. De Souza, A.F. Faria, E.L. Cancellier, H.R.O. Silveira, and L.R.G. Guilherme. 2015. Common bean growth and health promoted by rhizobacteria and the contribution of magnesium to the observed responses. Appl. Soil Ecol. 87, 49-55. Doi: https://doi.org/10.1016/j.apsoil.2014.11.005
  52. Martins, S.A., D.A. Schurt, S.S. Seabra, S.J. Martins, M.A.P. Ramalho, F.M.S. Moreira, J.C.P. Silva, J.A.G. Silva, and F.H.V. Medeiros. 2018. Common bean (Phaseolus vulgaris L.) growth promotion and biocontrol by rhizobacteria under Rhizoctonia solani suppressive and conducive soils. Appl. Soil Ecol. 127, 129-135. Doi: https://doi.org/10.1016/j.apsoil.2018.03.007
  53. Melo, A.P., F.L. Olivares, L.O. Médici, A. Torres-Neto, L.B. Dobbss, and L.P. Canellas. 2017. Mixed rhizobia and Herbaspirillum seropedicae inoculations with humic acid-like substances improve water-stress recovery in common beans. Chem. Biol. Technol. Agric. 4(1), 6. Doi: https://doi.org/10.1186/s40538-017-0090-z
  54. Mercante, F.M., A.A. Otsubo, and O.R. Brito. 2017. New native rhizobia strains for inoculation of common bean in the Brazilian savanna. Rev. Bras. Cienc. Solo 41, 1-11. Doi: https://doi.org/10.1590/18069657rbcs20150120
  55. MinAgricultura, Ministerio de Agricultura y Desarrollo Rural. 2017. Evaluaciones Agropecuarias Municipales: fríjol. In: http://www.siembra.co/Regional/ContextoAgro/Reporte; consulted: May, 2023.
  56. Morales, E.J., M. Rubí-Arriaga, J.A. López-Sandoval, A.R. Martínez-Campos, and E.J. Morales-Rosales. 2019. Urea (NBPT) una alternativa en la fertilización nitrogenada de cultivos anuales. Rev. Mex. Cienc. Agric. 10(8), 1875-1886. Doi: https://doi.org/10.29312/remexca.v10i8.1732
  57. Mortinho, E.S., A. Jalal, C.E.S. Oliveira, G.C. Fernandes, N.C.M. Pereira, P.A.L. Rosa, V. Nascimento, M.E. Sá, and M.C.M. Teixeira Filho. 2022. Co-inoculations with plant growth-promoting bacteria in the common bean to increase efficiency of NPK fertilization. Agronomy 12(6), 1325. Doi: https://doi.org/10.3390/agronomy12061325
  58. Murillo, J., G. Rodríguez, B. Roncallo, L.A. Rojas, and R.R. Bonilla. 2014. Efecto de la aplicación de prácticas sostenibles en las características físicas, químicas y microbiológicas de suelos degradados. Pastos y Forrajes 37(3), 270-278.
  59. Nardi, S., A. Ertani, and O. Francioso. 2017. Soil root crosstalking: the role of humic substances. J. Plant Nutrit. Soil Sci. 180(1), 5-13. Doi: https://doi.org/10.1002/jpln.201600348
  60. Nardi, S., D. Pizzeghello, A. Muscolo, and A. Vianello. 2002. Physiological effects of humic substances on higher plants. Soil Biol. Biochem. 34(11), 1527-1536. Doi: https://doi.org/10.1016/S0038-0717(02)00174-8
  61. Negi, S., N.K. Bharat, and M. Kumar. 2021. Effect of seed biopriming with indigenous PGPR, Rhizobia and Trichoderma sp. on growth, seed yield and incidence of diseases in French bean (Phaseolus vulgaris L.). Legum. Res. 44(5), 593-601. Doi: https://doi.org/10.18805/LR-4135
  62. Perez, L., D.A. Rios, D.C. Giraldo, J. Twyman, G. Blundo-Canto, S.D. Prager, and J. Ramirez-Villegas. 2019. Determinants of vulnerability of bean growing households to climate variability in Colombia. Clim. Dev. 12(8), 730-742. Doi: https://doi.org/10.1080/17565529.2019.1685931
  63. Qian, S., W. Ding, Y. Li, G. Liu, J. Sun, and Q. Ding. 2015. Characterization of humic acids derived from Leonardite using a solid-state NMR spectroscopy and effects of humic acids on growth and nutrient uptake of snap bean. Chem. Speciat. Bioavailab. 27(4), 156-161. Doi: https://doi.org/10.1080/09542299.2015.1118361
  64. Remans, R., A. Croonenborghs, R. Torres, J. Michiels, and J. Vanderleyden. 2007. Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. Eur. J. Plant Pathol. 119(3), 341-351. Doi: https://doi.org/10.1007/s10658-007-9154-4
  65. Remans, R., L. Ramaekers, S. Schelkens, G. Hernandez, A. Garcia, J.L. Reyes, N. Mendez, V. Toscano, M. Mulling, L. Galvez, and J. Vanderleyden. 2008. Effect of Rhizobium-Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312(1-2), 25-37. Doi: https://doi.org/10.1007/s11104-008-9606-4
  66. Rezende, A.A., M.T.B. Pacheco, V.S.N. Silva, and T.A.P.C. Ferreira. 2018. Nutritional and protein quality of dry Brazilian beans (Phaseolus vulgaris L.). Food Sci. Technol. 38, 421-427. Doi: https://doi.org/10.1590/1678-457X.05917
  67. Rodda, M.R.C., L.P. Canellas, A.R. Façanha, D.B. Zandonadi, J.G.M. Guerra, D.L. Almeida, and G.A. Santos. 2006. Estímulo no crescimento e na hidrólise de ATP em raízes de alface tratadas com humatos de vermicomposto. I - Efeito da concentração. Rev. Bras. Cienc. Solo 30(4), 649-656. Doi: https://doi.org/10.1590/S0100-06832006000400005
  68. Sabaté, D.C., C. Pérez, G. Petroselli, R. Erra-Balsells, and M.C. Audisio. 2017. Decrease in the incidence of charcoal root rot in common bean (Phaseolus vulgaris L.) by Bacillus amyloliquefaciens B14, a strain with PGPR properties. Biol. Control 113, 1-8. Doi: https://doi.org/10.1016/j.biocontrol.2017.06.008
  69. Sellappan, R., S. Dhandapani, A. Selvaraj, and K. Thangavel. 2021. Archaeal symbiosis for plant health and soil fertility. pp. 221-228. In: Shrivastava, N., S. Mahajan, and A. Varma (eds.). Symbiotic soil microorganisms: biology and applications. Springer, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-030-51916-2_14
  70. Shamseldin, A. and E. Velázquez. 2020. The promiscuity of Phaseolus vulgaris L. (common bean) for nodulation with rhizobia: a review. World J. Microbiol. Biotechnol. 36, 63. Doi: https://doi.org/10.1007/s11274-020-02839-w
  71. Sooriyaarachchi, N.D., M.C.M. Zakeel, M.I.S. Safeena, and K.M.R.D. Abhayapala. 2021. Role of rhizosphere and endophytic microbes in alleviation of biotic and abiotic stress in plants. pp. 195-235. In: Soni, R., D.C. Suyal, P. Bhargava, and R. Goel (eds.). Microbiological activity for soil and plant health management, Springer, Singapore. Doi: https://doi.org/10.1007/978-981-16-2922-8_9
  72. Steiner, F., C.E.S. Oliveira, T. Zoz, A.M. Zuffo, and R.S. Freitas. 2020. Co-inoculation of common bean with Rhizobium and Azospirillum enhance the drought tolerance. Russ. J. Plant Physiol. 67, 923-932. Doi: https://doi.org/10.1134/S1021443720050167
  73. Souza, J.E.B. and E.P.B. Ferreira. 2017. Improving sustainability of common bean production systems by co-inoculating rhizobia and azospirilla. Agric. Ecosyst. Environ. 237, 250-257. Doi: https://doi.org/10.1016/j.agee.2016.12.040
  74. Suárez, J.C., J.A. Polanía, A.T. Contreras, L. Rodríguez, L. Machado, C. Ordoñez, S. Beebe, and I.M. Rao. 2020. Adaptation of common bean lines to high temperature conditions: genotypic differences in phenological and agronomic performance. Euphytica 216(2), 28. Doi: https://doi.org/10.1007/s10681-020-2565-4
  75. Suárez, R., A. Wong, M. Ramírez, A. Barraza, M.D. Orozco, M.A. Cevallos, M. Lara, G. Hernández, and G. Iturriaga. 2008. Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol. Plant Microbe Interact. 21(7), 958-966. Doi: https://doi.org/10.1094/MPMI-21-7-0958
  76. Tofiño-Rivera, A.P., I.J. Pastrana-Vargas, A.E. Melo-Ríos, S. Beebe, and R. Tofiño-Rivera. 2016. Rendimiento, estabilidad fenotípica y contenido de micronutrientes de fríjol biofortificado en el Caribe seco colombiano. Cienc. Tecnol. Agropecu. 17(3), 309-329. Doi: https://doi.org/10.21930/rcta.vol17_num3_art:511
  77. Trabelsi, D., A. Mengoni, H. Ben Ammar, and R. Mhamdi. 2011. Effect of on-field inoculation of Phaseolus vulgaris with rhizobia on soil bacterial communities. FEMS Microbiol. Ecol. 77(1), 211-222. Doi: https://doi.org/10.1111/j.1574-6941.2011.01102.x
  78. Trevisan, S., O. Francioso, S. Quaggiotti, and S. Nardi. 2010. Humic substances biological activity at the plant-soil interface from environmental aspects to molecular factors. Plant Signal. Behav. 5(6), 635-643. Doi: https://doi.org/10.4161/psb.5.6.11211
  79. Vaughan, D. and R.E. Malcolm. 1985. Influence of humic substances on growth and physiological process. pp. 37-75. In: Vaughan, D. and R.E. Malcolm (eds.). Soil organic matter and biological activity. Developments in plant and soil sciences. Vol 16. Springer, Dordrecht, The Netherlands. Doi: https://doi.org/10.1007/978-94-009-5105-1_2
  80. Vasconcelos, L., F. Carvalho, J. Fonseca, D. Padua, F.H. Vasconcelos, and F.M. Souza. 2020. Co-inoculation of selected nodule endophytic rhizobacterial strains with Rhizobium tropici promotes plant growth and controls damping off in common bean. Pedosphere 30(1), 98-108. Doi: https://doi.org/10.1016/S1002-0160(19)60825-8
  81. Veobides-Amador, H., F. Guridi-Izquierdo, and V. Vázquez-Padrón. 2018. Las sustancias húmicas como bioestimulantes de plantas bajo condiciones de estrés ambiental. Cult. Trop. 39(4), 102-109.
  82. Velichko, N.S., A.R. Bagavova, G.L. Burygin, A.K. Baymiev, T.E. Pylaev, and Y.P. Fedonenko. 2022. In situ localization and penetration route of an endophytic bacteria into roots of wheat and the common bean. Rhizosphere 23, 100567. Doi: https://doi.org/10.1016/j.rhisph.2022.100567
  83. Santillana, N. 2021. Mecanismos de inducción de rizobios para reducir el estrés por sequía en las leguminosas. Rev. Investig. Altoand. 23(4), 258-265. Doi: https://doi.org/10.18271/ria.2021.263
  84. Yadav, S.K., A. Dave, A. Sarkar, H.B. Singh, and B.K. Sarma. 2013. Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. Int. J. Agric. Environ. Biotechnol. 6(2), 255-259.
  85. Yadegari, M., H.A. Rahmani, G. Noormohammadi, and A. Ayneband. 2008. Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria on yield and yield components. Pak. J. Biol. Sci. 11(15), 1935-1939. Doi: https://doi.org/10.3923/pjbs.2008.1935.1939
  86. Yadegari, M., H.A. Rahmani, G. Noormohammadi, and A. Ayneband. 2010 Plant growth promoting rhizobacteria increase growth, yield and nitrogen fixation in Phaseolus vulgaris. J. Plant Nutrit. 33(12), 1733-1743. Doi: https://doi.org/10.1080/01904167.2010.503776
  87. Yanni, Y., M. Zidan, F. Dazzo, R. Rizk, A. Mehesen, F. Abdelfattah, and A. Elsadany. 2016. Enhanced symbiotic performance and productivity of drought stressed common bean after inoculation with tolerant native rhizobia in extensive fields. Agric. Ecosyst. Environ. 232, 119-128. Doi: https://doi.org/10.1016/j.agee.2016.07.006
  88. Zandonadi, D.B., L.P. Canellas, and A.R. Façanha. 2007. Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta 225, 1583-1595. Doi: https://doi.org/10.1007/s00425-006-0454-2

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 > >> 

También puede {advancedSearchLink} para este artículo.