Protección de la soja por el extracto de cáscara de naranja y sus nanocápsulas contra los daños del metanosulfonato de etilo
Resumen
Los cítricos son una de las fuentes más importantes de sustancias fenólicas, conocidas como antioxidantes y agentes protectores frente al metanosulfonato de etilo (EMS). Se utilizaron cáscaras de naranja para extraer compuestos bioactivos como los fenoles, de los cuales se midieron sus concentraciones, además de evaluar la actividad antioxidante de los extractos. Se utilizó planta de soja para estudiar el efecto de varias concentraciones (0,01; 0,1; 1%) de extracto acuoso de cáscara de naranja como material protector al que se le añadió EMS (0,7%), así como extracto nanoencapsulado al 0,1%. Se midieron varios parámetros para evaluar el efecto de estas concentraciones en la soja (tasa de germinación, altura de la planta, número de hojas, características de las hojas, número total de flores después de 40 días desde la germinación, número de vainas por planta, número de semillas por planta, número de semillas por vaina, peso de 100 semillas). Los resultados mostraron que el 1% de extracto acuoso de cáscara de naranja tuvo el mayor efecto protector; sin embargo, no se mostró ningún efecto positivo cuando se usó sin EMS; el uso de 0,01% de extracto de cáscara de naranja fue realmente ventajoso para el crecimiento de las plantas. Por otro lado, el extracto nanoencapsulado de pectina-calcio al 0,1% mostró mejor efectividad en comparación con el extracto no encapsulado a la misma concentración. Estos resultados revelaron que el uso de extractos de plantas podría ser un enfoque prometedor para proteger las plantas de sustancias nocivas existentes en algunos medios (cultivo de tejidos) y entornos.
Palabras clave
Cítricos, Soja, Fenoles, Mutación, Antimutágenos, Nanoencapsulación
Citas
- Abbas, M.S., M. Afzaal, F. Saeed, A. Asghar, L. Jianfeng, A. Ahmad, Q. Ullah, S. Elahi, H. Ateeq, Y.A. Shah, M. Nouman, and M.A. Shah. 2023. Probiotic viability as affected by encapsulation materials: recent updates and perspectives. Int. J. Food. Prop. 26(1), 1324-1350. Doi: https://doi.org/10.1080/10942912.2023.2213408
- Abd Elghani, E.M., A.M. Elsayed, F.A. Omar, M.M. Abdel-Aziz Emam, S.H. Tadros, F.M. Soliman, and A.M. Al-Mahallawi. 2023. Comparative GC analysis of valencia orange ripe and unripe peel essential oils, nano-formulation, anti-Helicobacter Pylori and anti-inflammatory evaluation: in vitro and in silico. J. Essent. Oil-Bear. Plants 26(1), 190-205. Doi: https://doi.org/10.1080/0972060X.2023.2182706
- Abdel Wahab, A.S., A.M. Abou Elyazeed, and A.E. Abdalla. 2018. Bioactive compounds in some citrus peels as affected by drying processes and quality evaluation of cakes supplemented with citrus peels powder. J. Adv. Agric. Res. (Fac. Agric. Saba Basha). 23(1), 44-67.
- Adefegha, S.A., A. Salawi, A. Bumrungpert, S. Khorasani, S. Torkaman, M.R. Mozafari, and E. Taghavi. 2022. Encapsulation of polyphenolic compounds for health promotion and disease prevention: challenges and opportunities. Nano Micro Biosyst. 1(2), 1-12. Doi: https://doi.org/10.22034/nmbj.2023.163756
- Ademosun, A.O. 2022. Citrus peels odyssey: from the waste bin to the lab bench to the dining table. Appl. Food Res. 2(1), 100083. Doi: https://doi.org/10.1016/j.afres.2022.100083
- Ahmad, M.M., Salim-ur-Rehman, T.M. Qureshi, M. Nadeem, and M. Asghar. 2016. Variability in peel composition and quality evaluation of peel oils of Citrus varieties. J. Agric. Res. 54(4), 747-756. Doi: 10.13140/RG.2.2.25607.85922
- AlHafez, M., F. Kheder, and M. Aljoubbeh. 2014. Polyphenols, flavonoids and (-)-epigallocatechin gallate in tea leaves and in their infusions under various conditions. Nutr. Food. Sci. 44(5), 455-463. Doi: https://doi.org/10.1108/NFS-10-2013-0119
- Al-idee, T., H. Habbal, F. Karabet, and I. Alghoraibi. 2022. Comparison study between cherry and arabic gums in preparation and characterization of orange peel extract nanocapsules. J. Nanomater. 2022(1), 7721983. Doi: https://doi.org/10.1155/2022/7721983
- Arici, Ş.E. and A. Kara. 2021. Determination of the ethyl methanesulfonate-induced resistance in potato to Rhizoctonia solani. J. Agric Fac Gazi. Univ. 38(1), 28-37.
- Asdaq, S.M.B., S.I. Rabbani, M. Imran, A.A. Alanazi, G.Y. Alnusir, A.A. Al-Shammari, F.H. Alsubaie, and A.J. Alsalman. 2021. A review on potential antimutagenic plants of Saudi Arabia. Appl. Sci. 11(18), 8494. Doi: https://doi.org/10.3390/app11188494
- Azaat, A., G. Babojian, and N. Issa. 2022. Phytochemical screening, antioxidant and anticancer activities of Euphorbia hyssopifolia L. against MDA-MB-231 breast cancer cell line. J. Turk. Chem. Soc. Sec. A: Chem. 9(1), 295-310. Doi: https://doi.org/10.18596/jotcsa.1021449
- Boran, R. and A. Ugur. 2017. The mutagenic, antimutagenic and antioxidant properties of Hypericum lydium. Pharm. Biol. 55(1), 402-405. Doi: https://doi.org/10.1080/13880209.2016.1242146
- Brezo-Borjan, T., J. Švarc-Gajić, S. Morais, C. Delerue-Matos, F. Rodrigues, I. Lončarević, and B. Pajin. 2023. Chemical and biological characterisation of orange (Citrus sinensis) peel extracts obtained by subcritical water. Processes 11(6), 1766. Doi: https://doi.org/10.3390/pr11061766
- Calomme, M., L. Pieters, A. Vlietinck, and D.V. Berghe. 1996. Inhibition of bacterial mutagenesis by Citrus flavonoids. Planta Med. 62(3), 222-226. Doi: https://doi.org/10.1055/s-2006-957864
- Camacho, M.M., M. Zago, E. García-Martínez, and N. Martínez-Navarrete. 2022. Free and bound phenolic compounds present in orange juice by-product powder and their contribution to antioxidant activity. Antioxidants 11(9), 1748. Doi: https://doi.org/10.3390/antiox11091748
- Cassimjee, H., P. Kumar, Y.E. Choonara, and V. Pillay. 2020. Proteosaccharide combinations for tissue engineering applications. Carbohydr. Polym. 235, 115932. Doi: https://doi.org/10.1016/j.carbpol.2020.115932
- Cavalcante, F.M.L., I.V. Almeida, E. Dusman, M.S. Mantovani, and V.E.P. Vicentini. 2018. Cytotoxicity, mutagenicity, and antimutagenicity of the gentisic acid on HTC cells. Drug Chem. Toxicol. 41(2), 155-161. Doi: https://doi.org/10.1080/01480545.2017.1322606
- Chan, S.Y., W.S. Choo, D.J. Young, and X.J. Loh. 2017. Pectin as a rheology modifier: origin, structure, commercial production and rheology. Carbohydr. Polym. 161, 118-139. Doi: https://doi.org/10.1016/j.carbpol.2016.12.033
- Chen, L., L. Duan, M. Sun, Z. Yang, H. Li, K. Hu, H. Yang, and L. Liu. 2023. Current trends and insights on EMS mutagenesis application to studies on plant abiotic stress tolerance and development. Front. Plant. Sci. 13, 1052569. Doi: https://doi.org/10.3389/fpls.2022.1052569
- Clevenger, J.F. 1928. Apparatus for the determination of volatile oil. J. Am. Pharm. Assoc. 17(4), 345-349. Doi: https://doi.org/10.1002/jps.3080170407
- Collins, A.R., A. Azqueta, and S.A.S. Langie. 2012. Effects of micronutrients on DNA repair. Eur. J. Nutr. 51(3), 261-279. Doi: https://doi.org/10.1007/s00394-012-0318-4
- Colpas, F.T., E.O. Ono, J.D. Rodrigues, and J.R.S. Passos. 2003. Effects of some phenolic compounds on soybean seed germination and on seed-borne fungi. Braz. Arch. Biol. Technol. 46(2), 155-161.
- Cooper, J.L., B.J. Till, R.G. Laport, M.C. Darlow, J.M. Kleffner, A. Jamai, T. El-Mellouki, S. Liu, R. Ritchie, N. Nielsen, K.D. Bilyeu, K. Meksem, L. Comai, and S. Henikoff. 2008. TILLING to detect induced mutations in soybean. BMC Plant. Biol. 8, 9. Doi: https://doi.org/10.1186/1471-2229-8-9
- Dahiya, D., A. Terpou, M. Dasenaki, and P.S. Nigam. 2023. Current status and future prospects of bioactive molecules delivered through sustainable encapsulation techniques for food fortification. Sustain. Food. Technol. 1(4), 500-510. Doi: https://doi.org/10.1039/D3FB00015J
- De Flora, S. 1988. Mechanisms of inhibitors of mutagenesis and carcinogenesis. Mutat. Res. 202(2), 285-306. Doi: https://doi.org/10.1016/0027-5107(88)90193-5
- De Flora, S., A. Izzotti, F. D’Agostini, R.M. Balansky, D. Noonan, and A. Albini. 2001. Multiple points of intervention in the prevention of cancer and other mutation-related diseases. Mutat. Res. 480-481, 9-22. Doi: https://doi.org/10.1016/S0027-5107(01)00165-8
- De Méo, M., M. Laget, M. Castegnaro, and G. Duménil. 1990. Evaluation of methods for destruction of some alkylating agents. Am. Ind. Hyg. Assoc. J. 51(9), 505-509. Doi: https://doi.org/10.1080/15298669091370004
- Deligiannakis, Y., G.A. Sotiriou, and S.E. Pratsinis. 2012. Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with gallic acid. ACS Appl. Mater. Interfaces 4(12), 6609-6617. Doi: https://doi.org/10.1021/am301751s
- Díaz-Montes, E. 2023. Wall materials for encapsulating bioactive compounds via spray-drying: a review. Polymers 15(12), 2659. Doi: https://doi.org/10.3390/polym15122659
- Duta-Cornescu, G., N. Constantin, D.M. Pojoga, D. Nicuta, and A. Simon-Gruita. 2023. Somaclonal variation-advantage or disadvantage in micropropagation of the medicinal plants. Int. J. Mol. Sci. 24(1), 838. Doi: https://doi.org/10.3390/ijms24010838
- Elder, D., K.L. Facchine, J.N. Levy, R. Parsons, D. Ridge, L. Semo, and A. Teasdale. 2012. An approach to control strategies for sulfonate ester formation in pharmaceutical manufacturing based on recent scientific understanding. Org. Process. Res. Dev. 16(11), 1707-1710. Doi: https://doi.org/10.1021/op300216x
- Entezari, M. and S.J. Hosseini. 2014. Antimutagenicity effect of Citrus nobilis. Arch. Adv. Biosci. 5(1), 121-124. Doi: https://doi.org/10.22037/jps.v5i1.5403
- Entezari, M. and F. Ostadzadeh. 2014. Antimutagenesis effects of naringin. pp. 17-19. In: International Conference on Biological, Civil and Environmental Engineering (BCEE). Dubai (UAE).
- Erwin, J. 2007. Factors affecting flowering in ornamental plants. pp. 7-48. In: Anderson, N.O. (ed.). Flower breeding and genetics. Springer, Dordrecht. Doi: https://doi.org/10.1007/978-1-4020-4428-1_1
- Espina, M.J., C.M.S. Ahmed, A. Bernardini, E. Adeleke, Z. Yadegari, P. Arelli, V. Pantalone, and A. Taheri. 2018. Development and phenotypic screening of an ethyl methane sulfonate mutant population in soybean. Front. Plant Sci. 9, 394. Doi: https://doi.org/10.3389/fpls.2018.00394
- FAO. 2023. Introduction and advantages of protected cultivation systems. In: https://www.fao.org/3/cc7839en/cc7839en.pdf; consulted: April, 2023.
- Farahmandghavi, F., M. Imani, and F. Hajiesmaeelian. 2019. Silicone matrices loaded with levonorgestrel particles: impact of the particle size on drug release. J. Drug Deliv. Sci. Technol. 49, 132-142. Doi: https://doi.org/10.1016/j.jddst.2018.10.029
- Fernando, I.P.S., M. Kim, K.-T. Son, Y. Jeong, and Y.-J. Jeon. 2016. Antioxidant activity of marine algal polyphenolic compounds: a mechanistic approach. J. Med. Food. 19(7), 1-14. Doi: https://doi.org/10.1089/jmf.2016.3706
- Gautam, S., S. Saxena, and S. Kumar. 2016. Fruits and vegetables as dietary sources of antimutagens. J. Food Chem. Nanotechnol. 2(3), 97-114. Doi: https://doi.org/10.17756/jfcn.2016-018
- Geetha, B. and K.S. Santhy. 2013. Evaluation of antimutagenic activity of orange peel extract using ames salmonella microsome assay. Int. J. Lif. Sci. Biotechnol. Pharm. Res. 2(3), 466-471.
- Ghahfarokhi, M.G., M. Barzegar, M.A. Sahari, and M.H. Azizi. 2016. Enhancement of thermal stability and antioxidant activity of thyme essential oil by encapsulation in chitosan nanoparticles. J. Agric. Sci. Tech. 18, 1781-1792.
- Gopinath, P. and P. Pavadai. 2015. Morphology and yield parameters and biochemical analysis of soybean (Glycine max (L.) Mrr.) using gamma rays, EMS and DES treatment. Int. Lett. Nat. Sci. 35, 50-58. Doi: https://doi.org/10.56431/p-440u8u
- Gutierrez-Alvarado, K., R. Chacón-Cerdas, and R. Starbird-Perez. 2022. Pectin microspheres: synthesis methods, properties, and their multidisciplinary applications. Chemistry 4(1), 121-136. Doi: https://doi.org/10.3390/chemistry4010011
- Herdiana, Y., N. Wathoni, S. Shamsuddin, and M. Muchtaridi. 2022. Drug release study of the chitosan-based nanoparticles. Heliyon 8(1), e08674. Doi: https://doi.org/10.1016/j.heliyon.2021.e08674
- Hour, T.-C., Y.-C. Liang, I.-S. Chu, and J.-K. Lin. 1999. Inhibition of eleven mutagens by various tea extracts,(−)epigallocatechin-3 gallate, gallic acid and caffeine. Food. Chem. Toxicol. 37(6), 569-579. Doi: https://doi.org/10.1016/S0278-6915(99)00031-9
- Hu, S., Y. Ding, and C. Zhu. 2020. Sensitivity and responses of chloroplasts to heat stress in plants. Front. Plant Sci. 11, 375. Doi: https://doi.org/10.3389/fpls.2020.00375
- Huang, M.-H., H.-M. Tai, B.-S. Wang, and L.-W. Chang. 2013. Inhibitory effects of water extract of Flos inulae on mutation and tyrosinase. Food Chem. 139(1-4), 1015-1020. Doi: https://doi.org/10.1016/j.foodchem.2013.01.066
- Kada, T., T. Inoue, and N. Namiki. 1982. Environmental desmutagens and antimutagens. pp. 137-151. In: Klekowski, E.J. (ed.). Environmental mutagenesis and plant biology. Praeger, New York, NY. Doi: https://doi.org/10.1007/978-1-4615-9561-8_50
- Kamal, G.M., F. Anwar, A.I. Hussain, N. Sarri, and M.Y. Ashraf. 2011. Yield and chemical composition of Citrus essential oils as affected by drying pretreatment of peels. Int. Food Res. J. 18(4), 1275-1282.
- Khan, I., K. Saeed, and I. Khan. 2019. Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12(7), 908-931. Doi: https://doi.org/10.1016/j.arabjc.2017.05.011
- Koshika, N., N. Shioya, T. Fujimura, R. Oguchi, C. Ota, E. Kato, R. Takahashi, S. Kimura, S. Furuno, K. Saito, K. Okabe, M. Watanabe, and T. Hoshino. 2022. Development of ethyl methanesulfonate mutant edamame soybean (Glycine max (L.) Merr.) populations and forward and reverse genetic screening for early-flowering mutants. Plants 11(14), 1839. Doi: https://doi.org/10.3390/plants11141839
- Krogmeier, M.J. and J.M. Bremner. 1989. Effects of phenolic acids on seed germination and seedling growth in soil. Biol. Fert. Soils 8, 116-122. Doi: https://doi.org/10.1007/BF00257754
- Ladaniya, M. 2023. Fruit biochemistry. pp. 173-247. In: Citrus fruit: biology, technology and evaluation. 2nd ed. Elsevier Inc, Academic Press, Cambridge, MA. Doi: https://doi.org/10.1016/B978-0-323-99306-7.00021-9
- Lee, C.-M. 2023. A review on the antimutagenic and anticancer effects of cysteamine. Adv. Pharmacol. Pharm. Sci. 2023(1), 2419444. Doi: https://doi.org/10.1155/2023/2419444
- Li, B.B., B. Smith, and M.M. Hossain. 2006. Extraction of phenolics from citrus peels: II. Enzyme-assisted extraction method. Sep. Purif. Technol. 48(2), 182-188. Doi: https://doi.org/10.1016/j.seppur.2005.07.019
- Makhafola, T.J., E.E. Elgorashi, L.J. McGaw, L. Verschaeve, and J.N. Eloff. 2016. The correlation between antimutagenic activity and total phenolic content of extracts of 31 plant species with high antioxidant activity. BMC Complement. Altern. Med. 16(490), 1-13. Doi: https://doi.org/10.1186/s12906-016-1437-x
- Marnewick, J.L., W.C.A. Gelderblom, and E. Joubert. 2000. An investigation on the antimutagenic properties of South African herbal teas. Mutat. Res. - Genet. Toxicol. Environ. Mutag. 471(1-2), 157-166. Doi: https://doi.org/10.1016/s1383-5718(00)00128-5
- Matsumoto, T., M. Koike, C. Arai, T. Kitagawa, E. Inoue, D. Imahori, and T. Watanabe. 2018. Chemical structures and antimutagenic effects of unusual oximes from the peels of Citrus limon. Phytochem. Lett. 25, 118-121. Doi: https://doi.org/10.1016/j.phytol.2018.04.016
- Matsumoto, T., S. Nakamura, N. Kojima, T. Hasei, M. Yamashita, T. Watanabe, and H. Matsuda. 2017a. Antimutagenic activity of ent-kaurane diterpenoids from the aerial parts of Isodon japonicus. Tetrahed. Lett. 58(36), 3574-3578. Doi: https://doi.org/10.1016/j.tetlet.2017.07.106
- Matsumoto, T., T. Nishikawa, A. Furukawa, S. Itano, Y. Tamura, T. Hasei, and T. Watanabe. 2017b. Antimutagenic effects of polymethoxy flavonoids of Citrus unshiu. Nat. Prod. Commun. 12(1), 23-26. Doi: https://doi.org/10.1177/1934578X1701200108
- Matsumoto, T., K. Takahashi, S. Kanayama, Y. Nakano, H. Imai, M. Kibi, D. Imahori, T. Hasei, and T. Watanabe. 2017c. Structures of antimutagenic constituents in the peels of Citrus limon. J. Nat. Med. 71(4), 735-744. Doi: https://doi.org/10.1007/s11418-017-1108-3
- Mbaveng, A.T., Q. Zhao, and V. Kuete. 2014. Harmful and protective effects of phenolic compounds from African medicinal plants. Toxicol. Surv. Afr. Med. Plants 20, 577-609. Doi: https://doi.org/10.1016/B978-0-12-800018-2.00020-0
- Medhe, S., P. Bansal, and M.M. Srivastava. 2014. Enhanced antioxidant activity of gold nanoparticle embedded 3,6-dihydroxyflavone: a combinational study. Appl. Nanosci. 4(2), 153-161. Doi: https://doi.org/10.1007/s13204-012-0182-9
- Mezerji, Z.K., R. Boshrouyeh, S.H. Razavi, S. Ghajari, H. Hajiha, N. Shafaei, E. Karimi, and E. Oskoueian. 2023. Encapsulation of Polygonum bistorta root phenolic compounds as a novel phytobiotic and its protective effects in the mouse model of enteropathogenic Escherichia coli infection. BMC Complement. Med. Ther. 23(1), 49. Doi: https://doi.org/10.1186/s12906-023-03868-2
- Mushtaq, M., B. Sultana, F. Anwar, and S. Batool. 2015. Antimutagenic and antioxidant potential of aqueous and acidified methanol extracts from Citrus limonum fruit residues. J. Chil. Chem. Soc. 60(2), 2979-2983. Doi: http://doi.org/10.4067/S0717-97072015000200025
- Nleya, T., P. Sexton, K. Gustafson, and J.M. Miller. 2019. Soybean growth stages. pp. 25-34. In: iGrow soybeans: best management practices for soybean production. South Dakota State University; USDA, Washington, DC.
- Novick, A. and L. Szilard. 1952. Anti-mutagens. Nature 170, 926-927. Doi: https://doi.org/10.1038/170926a0
- Olguín-Reyes, S., R. Camacho-Carranza, S. Hernández-Ojeda, M. Elinos-Baez, and J.J. Espinosa-Aguirre. 2012. Bergamottin is a competitive inhibitor of CYP1A1 and is antimutagenic in the Ames test. Food. Chem. Toxicol. 50(9), 3094-3099. Doi: https://doi.org/10.1016/j.fct.2012.05.058
- Park, J.-H., M. Lee, and E. Park. 2014. Antioxidant activity of orange flesh and peel extracted with various solvents. Prev. Nutr. Food. Sci. 19(4), 291-298. Doi: https://doi.org/10.3746/pnf.2014.19.4.291
- Patil, A., S.P. Taware, and V.M. Raut. 2004. Induced variation in quantitative traits due to physical (γ rays), chemical (EMS) and combined mutagen treatments in soybean [Glycine max (L.) Merrill]. Soybean. Genet. Newsl. 31, 1-6.
- Pavadai, P., M. Girija, and D. Dhanavel. 2010. Effect of gamma rays, EMS, DES and COH on protein and oil content in soybean. J. Ecobiotechnol. 2(4), 47-50.
- Phull, A., Q. Abbas, A. Ali, H. Raza, S.J. Kim, M. Zia, and I. Ul-Haq. 2016. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliate. Future. J. Pharm. Sci. 2(1), 31-36. Doi: https://doi.org/10.1016/j.fjps.2016.03.001
- Pucci, C., C. Martinelli, A. Degl'Innocenti, A. Desii, D. De Pasquale, and G. Ciofani. 2021. Light-activated biomedical applications of chlorophyll derivatives. Macromol Biosci. 21(9), 2100181. Doi: https://doi.org/10.1002/mabi.202100181
- Rajabi, H., S.M. Jafari, G. Rajabzadeh, M. Sarfarazi, and S. Sedaghati. 2019. Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components. Coll. Surf. A. Physicochem. Eng. Asp. 578, 123644. Doi: https://doi.org/10.1016/j.colsurfa.2019.123644
- Ramadan, K., S. Nader, and A. Ibrahim. 2018. Evaluation of sequential extraction of some biological materials from orange fruits peel (Citrus sinensis). Bulg. J. Agric. Sci. 24(6), 1129-1136.
- Rashid, U., M. Ibrahim, S. Yasin, R. Yunus, Y.H. Taufiq-Yap, and G. Knothe. 2013. Biodiesel from Citrus reticulate (mandarin orange) seed oil, a potential non-food feedstock. Ind. Crops. Prod. 45, 355-359. Doi: https://doi.org/10.1016/j.indcrop.2012.12.039
- Saeed, M., M. Azam, H.S. Kiani, M. Hussain, H. Ahsan, T. Ahmad, H.K. Waseem, M. Bilal, A. Fatima, and A. Ali. 2023. Assessing the potential of milk-based encapsulation matrix for improved bio-accessibility of probiotics. Fermentation 9(8), 725. Doi: https://doi.org/10.3390/fermentation9080725
- Safdar, M.N., T. Kausar, S. Jabbar, A. Mumtaz, K. Ahad, and A.A. Saddozai. 2017. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. J. Food Drug. Anal. 25(3), 488-500. Doi: https://doi.org/10.1016/j.jfda.2016.07.010
- Sağel, Z., M.I. Tutluer, H. Peskı̇rcı̇oğlu, Y. Kantoğlu, and B. Kunter. 2017. Determination of effect of chemical mutagen EMS on TAEK A-3 and TAEK C-10 mutant soybean varieties in M1 generation. J. Am. Soc. Inf. Sci. Technol. 3(1), 19-24.
- Saïed, N., M. Khelifi, A. Bertrand, M. Aider, and G.F. Tremblay. 2020. Optimization of water-soluble carbohydrate extraction from sweet sorghum and sweet pearl millet biomass. Bioenerg. Res. 13, 237-248. Doi: https://doi.org/10.1007/s12155-020-10107-w
- Saleem, M., A.I. Durani, A. Asari, M. Ahmed, M. Ahmad, N. Yousaf, and M. Muddassar. 2023. Investigation of antioxidant and antibacterial effects of citrus fruits peels extracts using different extracting agents: phytochemical analysis with in silico studies. Heliyon 9(4), e15433. Doi: https://doi.org/10.1016/j.heliyon.2023.e15433
- Shamshad, A., M. Rashid, L. Jankuloski, K. Ashraf, K. Sultan, S. Alamri, M.H. Siddiqui, T. Munir, and Q. Zaman. 2023. Effect of ethyl methanesulfonate mediated mutation for enhancing morpho-physio-biochemical and yield contributing traits of fragrant rice. PeerJ. 11, e15821. Doi: https://doi.org/10.7717/peerj.15821
- Shen, C.-H. 2019. Nucleic acid-based cellular activities. pp. 27-57. In: Diagnostic molecular biology. Elsevier; Academic Press, London. Doi: https://doi.org/10.1016/B978-0-12-802823-0.00002-X
- Shimizu, K., H. Nakamura, and S. Watano. 2016. MD simulation study of direct permeation of a nanoparticle across the cell membrane under an external electric field. Nanoscale 8(23), 11897-11906. Doi: https://doi.org/10.1039/C6NR02051H
- Singh, J., K. Kaur, and P. Kumar. 2018. Optimizing microencapsulation of α-tocopherol with pectin and sodium alginate. J. Food Sci. Technol. 55(9), 3625-3631. Doi: https://doi.org/10.1007/s13197-018-3288-6
- Sir-Elkhatim, K.A., R.A.A. Elagib, and A.B. Hassan. 2018. Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Sci. Nutr. 6(5), 1214-1219. Doi: https://doi.org/10.1002/fsn3.660
- Słoczyńska, K., B. Powroźnik, E. Pękala, and A.M. Waszkielewicz. 2014. Antimutagenic compounds and their possible mechanisms of action. J. Appl. Genet. 55(2), 273-285. Doi: https://doi.org/10.1007/s13353-014-0198-9
- Sun, Y., M. Zhong, Y. Liao, M. Kang, B. Qi, and Y. Li. 2023. Pickering emulsions stabilized by reassembled oleosome protein nanoparticles for co-encapsulating hydrophobic nutrients. Food Hydrocoll. 138, 108445. Doi: https://doi.org/10.1016/j.foodhyd.2022.108445
- Toscano-Garibay, J.D., M. Arriaga-Alba, J. Sánchez-Navarrete, M. Mendoza-García, J.J. Flores-Estrada, M.A. Moreno-Eutimio, J.J. Espinosa-Aguirre, M. González-Ávila, and N.J. Ruiz-Pérez. 2017. Antimutagenic and antioxidant activity of the essential oils of Citrus sinensis and Citrus latifolia. Sci. Rep. 7, 11479. Doi: https://doi.org/10.1038/s41598-017-11818-5
- Traversier, M., T. Gaslonde, L. Lecso, S. Michel, and E. Delannay. 2020. Comparison of extraction methods for chemical composition, antibacterial, depigmenting and antioxidant activity of Eryngium maritimum. Int. J. Cosmet. Sci. 42(2), 127-135. Doi: https://doi.org/10.1111/ics.12595
- UNCTAD, United Nations Conference on Trade and Development. 2004. Market information in the commodities area: information on citrus fruit. In: https://unctad.org/system/files/official-document/ditccom20041ch3_en.pdf; consulted: April, 2023.
- USDA, United States Department of Agriculture USA. 2023. Citrus: world markets and trade. In: https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf; consulted: April, 2023.
- Valdez-Morales, M., L.G. Espinosa-Alonso, L.C. Espinoza-Torres, F. Delgado-Vargas, and S. Medina-Godoy. 2014. Phenolic content, and antioxidant and antimutagenic activities in tomato peel and seeds, and tomato by-products. J. Agric. Food. Chem. 62(23), 5281-5289. Doi: https://doi.org/10.1021/jf5012374
- Yuan, J., N. Bellaloui, N. Lakhssasi, S.M. AbuBakr, S. Kassem, Z. Kassem, S. Kassem, C. Barnes, A. McLelland, B. Brown, W. Adams, T. El-Mellouki, K. Meksem, and M.A. Kassem. 2020. Evaluation of yield performance of soybean mutant FM6-847 in North Carolina. Atlas J. Plant Biol. 2020, 96-105. Doi: https://doi.org/10.5147/ajpb.v0i0.215
- Zhang, Z., J. Yang, Q. Zhang, and X. Cao. 1991. Studies on the utilization of a plant SCE test in detecting potential mutagenic agents. Mut. Res. 261(1), 69-73. Doi: https://doi.org/10.1016/0165-1218(91)90099-8
- Zhou, Z., N. Lakhssassi, M.A. Cullen, A. El Baz, T.D. Vuong, H.T. Nguyen, and K. Meksem. 2019. Assessment of phenotypic variations and correlation among seed composition traits in mutagenized soybean populations. Genes 10(12), 975. Doi: https://doi.org/10.3390/genes10120975