Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Rompimiento de la dormancia en ñame espino (Dioscorea rotundata [Poir.]) mediante la aplicación de reguladores de crecimiento vegetal

Breaking dormancy in apical, middle, and basal sections of hawthorn yam. Photo: D.-B. Sánchez-López

Resumen

La dormancia en los tubérculos de ñame espino (Dioscorea rotundata [Poir.]) presenta retos durante el almacenamiento y la siembra en campo debido a períodos prolongados de dormancia, lo que conduce a ataques fúngicos y una densidad de siembra reducida. Este estudio tuvo como objetivo explorar la eficacia de los reguladores de crecimiento vegetal (RCV) en inducir la brotación temprana en tubérculos comerciales de ñame espino para mitigar estos problemas. Los tubérculos se dividieron en secciones apicales, medias y basales, se trataron con diversos RCV y se sembraron en sustrato estéril. La tiourea a 1,0 g L-1 se destacó como el tratamiento más efectivo, promoviendo el mayor porcentaje de brotación en todos los períodos de observación. La tiourea a 2,0 g L-1 demostró ser eficaz para las secciones apicales y medias, mientras que el cloruro de mepiquat a 2,0 mL L-1 estimuló la brotación en la parte basal. Estos hallazgos demuestran el potencial de los RCV en inducir la brotación temprana y mejorar la uniformidad de la germinación en los tubérculos de ñame espino, ofreciendo implicaciones prácticas para una mejor gestión de los cultivos.

Palabras clave

Propagación vegetativa, Cultivos de plantación, Brotación, Almacenamiento, Interruptores de dormancia

XML (English) PDF (English)

Citas

  1. Alcántara, J.S., J. Acero, J.D. Alcántara, and R.M. Sánchez. 2019. Principales reguladores hormonales y sus interacciones en el crecimiento vegetal. Nova 17(32), 109-129. Doi: https://doi.org/10.22490/24629448.3639
  2. Bhatla, S.C. and M.A. Lal. 2023. Plant growth regulators: an overview. pp. 391-398. Plant physiology: development and metabolism. Springer, Singapore. Doi: https://doi.org/10.1007/978-981-99-5736-1_14
  3. Chen, X., M. Zhang, M. Wang, G. Tan, M. Zhang, Y.X. Hou, B. Wang, and Z. Li. 2018. The effects of mepiquat chloride on the lateral root initiation of cotton seedlings are associated with auxin and auxin-conjugate homeostasis. BMC Plant Biol. 18(1), 361. Doi: https://doi.org/10.1186/s12870-018-1599-4
  4. Davies, P.J. 2010. The plant hormones: their nature, occurrence, and functions. pp. 1-15. In: Davies, P.J. (ed.). Plant hormones: biosynthesis, signal transduction, action. Springer, Dordrecht, The Netherlands. Doi: https://doi.org/10.1007/978-1-4020-2686-7_1
  5. Datir, S., R. Kumbhar, and P. Kumatkar. 2024. Understanding physiological and biochemical mechanisms associated with post-harvest storage of yam tuber (Dioscorea sp.). Technol. Hortic. 4(1) e004. Doi: https://doi.org/10.48130/tihort-0024-0001
  6. El-Maarouf-Bouteau, H. and C. Bailly. 2008. Oxidative signaling in seed germination and dormancy. Plant Signal Behav. 3(3), 175-182. Doi: https://doi.org/10.4161/psb.3.3.5539
  7. Epping, J. and N. Laibach. 2020. An underutilized orphan tuber crop—Chinese yam: a review. Planta 252, 58. Doi: https://doi.org/10.1007/s00425-020-03458-3
  8. FAO. 2021. FAOSTAT. World yam production/yield quantities + (total). In: https://www.fao.org/faostat/en/#data/QCL/visualize; consulted: Julio, 2023.
  9. Guo, H., Y. Lyv, W. Zheng, C. Yang, Y. Li, X. Wang, R. Chen, C. Wang, J. Luo, and L. Qu. 2021. Comparative metabolomics reveals two metabolic modules affecting seed germination in rice (Oryza sativa). Metabolites 11(12), 880. Doi: https://doi.org/10.3390/metabo11120880
  10. Gul, Z. and N. Iqbal. 2023. Chemical-induced dormancy breaking of freshly harvested potato minitubers and its effect on subsequent growth and yield. Asian J. Adv. Agric. Res. 23(4), 9-25. Doi: https://doi.org/10.9734/ajaar/2023/v23i4474
  11. Hamadina, E.I. and P.Q. Craufurd. 2015. Changes in free phenolics contents during tuber development, dormancy and sprouting in white yam (Dioscorea rotundata Poir.). Int. J. Plant Res. 5(2), 34-41. Doi: https://doi.org/10.5923/j.plant.20150502.02
  12. Hendricks, S.B. and R.B. Taylorson. 1975. Breaking of seed dormancy by catalase inhibition. Proc. Natl. Acad. Sci. USA 72(1), 306-309. Doi: https://doi.org/10.1073/pnas.72.1.306
  13. Kumari, N., S.K. Manhas, J. Jose-Santhi, D. Kalia, F.R. Sheikh, and R.K. Singh. 2024. Emerging into the world: the regulation and control of dormancy and sprouting in geophytes. J. Exp. Bot. 2024, erae216. Doi: https://doi.org/10.1093/jxb/erae216
  14. Lim, S.D., J.A. Mayer, W.C. Yim, and J.C. Cushman. 2020. Plant tissue succulence engineering improves water‐use efficiency, water‐deficit stress attenuation and salinity tolerance in Arabidopsis. Plant J. 103(3), 1049-1072. Doi: https://doi.org/10.1111/tpj.14783
  15. Mani, F., T. Bettaieb, N. Doudech, and C. Hannachi. 2013. Effect of hydrogen peroxide and thiourea on dormancy breaking of microtubers and field-grown tubers of potato. Afr. Crop Sci. J. 21(3), 221-234.
  16. MinAgricultura, Ministerio de Agricultura y Desarrollo Rural Colombia. 2022. Agronet: área, producción y rendimiento nacional por cultivo. In: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1; consulted: July, 2023.
  17. Nwogha, J.S., A.G. Wosene, M. Raveendran, J.E. Obidiegwu, H.O. Oselebe, R. Kambale, C.A. Chilaka, and V.R. Rajagopalan. 2023. Comparative metabolomics profiling reveals key metabolites and associated pathways regulating tuber dormancy in white yam (Dioscorea rotundata poir.). Metabolites 13(5), 610. Doi: https://doi.org/10.3390/metabo13050610
  18. Nwogha, J.S., A.G. Wosene, M. Raveendran, H.O. Oselebe, J.E. Obidiegwu, and D. Amirtham. 2022. Physiological and molecular basis of dormancy in yam tuber: a way forward towards genetic manipulation of dormancy in yam tubers. Global J. Sci. Front. Res. 47-73.
  19. Ranabhat, S., M. Dhital, A. Adhikari, B. Adhikari, and S. Shrestha. 2021. Concentration of thiourea is effective in breaking the dormancy of potato (Solanum tuberosum L.) varieties. Arch. Agric. Environ. Sci. 6(2), 129-133. Doi: https://doi.org/10.26832/24566632.2021.060203
  20. Rao, M. and C. George. 1990. Studies to extend the dormancy of white yam (Dioscorea alata L.). J. Agric. Univ. Puerto Rico 74(3), 213-219. Doi: https://doi.org/10.46429/jaupr.v74i3.6653
  21. Sanada, A., C. Cheng, H. Kikuno, and H. Shiwachi. 2018. Bulbil dormancy and formation in water yam (Dioscorea alata L.). Trop. Agric. Dev. 62(3), 109-114. Doi: https://doi.org/10.11248/jsta.62.109
  22. Sánchez-López, D.B., L.L. Luna-Castellano, S.M. Regino-Hernández, and J. Cadena-Torres. 2021. Inducción de la brotación en tubérculos de ñame (Dioscorea rotundata Por.) con la aplicación de reguladores de crecimiento. Terra Latinoam. 39, e855. Doi: https://doi.org/10.28940/terra.v39i0.855
  23. Santos-Cáceres, A.C., J.L. Barrera-Violet, and C.E. Cardona-Ayala. 2021. Postharvest application of growth regulators on Dioscorea alata (L.) and Dioscorea rotundata (Poir.). Rev. Colomb. Cienc. Hortic. 15(2), e12315. Doi: https://doi.org/10.17584/rcch.2021v15i2.12315
  24. Shangguan, L., M. Chen, X. Fang, Z. Xie, P. Gong, Y. Huang, Z. Wang, and J. Fang. 2020. Comparative transcriptome analysis provides insight into regulation pathways and temporal and spatial expression characteristics of grapevine (Vitis vinifera) dormant buds in different nodes. BMC Plant Biol. 20, 390. Doi: https://doi.org/10.1186/s12870-020-02583-1
  25. Taiz, L., I.M. Møller, A. Murphy, and E. Zeiger. 2023. Plant physiology and development. 7th ed. Sinauer; Oxford University Press, Oxford, UK. Doi: https://doi.org/10.1093/hesc/9780197614204.001.0001
  26. Velázquez-Hernández, J.M., N. Durán-Puga, J.A. Ruíz-Corral, D.R. González-Eguiarte, F. Santacruz-Ruvalcaba, and A. Gallegos-Rodríguez. 2022. Distribución geográfica y usos de especies del género Dioscorea. E-CUCBA 19(10), 141-150. Doi: https://doi.org/10.32870/ecucba.vi19.273
  27. Wickham, L.D. 2019. Successful manipulation of the growth cycle of yam (Dioscorea spp.) for year-round production for food security and climate change. Trop. Agric. 96, 27-39.
  28. Zhu, T., H. Pei, Z. Li, M. Zhang, C. Chen, and S. Li. 2023. The postharvest application of carvone, abscisic acid, gibberellin, and variable temperature for regulating the dormancy release and sprouting commencement of mini-tuber potato seeds produced under aeroponics. Plants 12(23), 3952. Doi: https://doi.org/10.3390/plants12233952

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 1 2 3 

También puede {advancedSearchLink} para este artículo.