Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Actividades antimicrobianas de especies vegetales recolectadas en la región Noreste de Colombia

Growth of Colletotrichum musae from diseased plant tissue of banana fruits.  Photo: F.A. Ortiz-Meneses

Resumen

Se han realizado estudios del potencial antimicrobiano de la flora natural, sobre múltiples bacterias (Gram-negativas y Gram-positivas) y hongos. Entre los patógenos de gran importancia se encuentran los del género Colletotrichum, que causan la antracnosis de una gran variedad de plantas. El objetivo de este trabajo fue determinar las actividades antimicrobianas (AAM), de extractos vegetales (EV) y aceites esenciales (AE) de material vegetal recolectado en la región nororiental de Colombia. Para los AE obtenidos de Piper tenue Kunth, Piper eriopodon (Miq.) C. DC., Piper marginatum Jacq., Hyptis suaveolens (L.) Poit, Eriope crassipes Benth. y Lippia origanoides Kunth., se evaluó la aparición de halos de inhibición contra: Staphylococcus aureus, Bacillus cereus, Salmonella typhimurium, Klebsiella spp., Escherichia coli, Aspergillus terreus, Aspergillus fumigatus, Aspergillus niger, Rhizopus spp. y Candida spp. Por otra parte, se estimaron las inhibiciones del crecimiento de Colletotrichum musae Berk. & Curt. y Colletotrichum asianum por EV obtenidos de Ocotea aff. Ocotea caparrapi (Sand.-Groot ex Nates) Dugand, Trattinnickia rhoifolia Willd., Tetragastris panamensis (Engl.) Kuntze y Siparuna guianensis Aubl. Los AE de L. origanoides y E. crassipes, inhibieron el crecimiento de S. typhimurium, A. terreus y Candida spp. Para C. musae: O. aff. O. caparrapi y T. rhoifolia (1,0% p/v), mostraron un porcentaje de inhibición del crecimiento micelial (ICM), y un porcentaje de reducción de la producción de conidios (PRPC) superiores al 85%; T. panamensis y S. guianensis mostraron ICM y PRPC superiores al 71%. Para C. asianum: O. aff. O. caparrapi (1,0% p/v), alcanzó una inhibición superior al 83% (ICM y PRPC), seguido de S. guianensis, T. panamensis y T. rhoifolia. Las AAM tuvieron una alta correlación con el contenido de fenoles. Los AE de L. origanoides y E. crassipes, y el EV de O. aff. O. caparrapi presentaron AAM altas, comparables con las sustancias de control.

Palabras clave

Piperaceae, Lamiaceae, Verbenaceae, Antifungal, Antibacterial

PDF (English)

Citas

  1. Ahad, B., W. Shahri, H. Rasool, Z.A. Reshi, S. Rasool, and T. Hussain. 2021. Medicinal plants and herbal drugs: An Overview. pp. 1-40. In: Aftab, T. and K.R. Hakeem (eds.). Medicinal and aromatic plants. Springer, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-030-58975-2_1
  2. Almeida, M.C., E.S. Pina, C. Hernandes, S.M. Zingaretti, S.H. Taleb-Contini, F.R.G. Salimena, S.N. Slavov, S.K. Haddad, S.C. França, A.M.S. Pereira, and B.W. Bertoni. 2018. Genetic diversity and chemical variability of Lippia spp. (Verbenaceae). BMC Res. Notes 11, 725. Doi: https://doi.org/10.1186/s13104-018-3839-y
  3. Balendres, M.A., J. Mendoza, and F. De la Cueva. 2019. Characteristics of Colletotrichum musae PHBN0002 and the susceptibility of popular banana cultivars to postharvest anthracnose. Indian Phytopathol. 73(1), 57-64. Doi: https://doi.org/10.1007/s42360-019-00178-x
  4. Barbosa, L.C., F. Martins, R. Texeira, M. Polo, and R. Montanari. 2013. Chemical variability and biological activities of volatile oils from H suaveolens (L.) Poit. Agric. Conspec. Sci. 78(1), 1-10. https://acs.agr.hr/acs/index.php/acs/article/view/634/611
  5. Barreto, H.M., F.C. Fontinele, A.P. Oliveira, D. Arcanjo, B.H.C. Santos, A.P. Abreu, H.D.M. Coutinho, R.A.C. Silva, T.O. Sousa, M.G.F. Medeiros, A.M.G.L. Citó, and J.A.D. Lopes 2014. Phytochemical prospection and modulation of antibiotic activity in vitro by Lippia origanoides H.B.K. in methicillin resistant Staphylococcus aureus. Bio. Med. Res. Int. 2014(1), 305610. Doi: https://doi.org/10.1155/2014/305610
  6. Butnariu, M. and I. Sarac. 2018. Essential oils from plants. J. Biotechnol. Biomed. Sci. 1(4), 35-43. Doi: https://doi.org/10.14302/issn.2576-6694.jbbs-18-2489
  7. Can Baer, K.H. and G. Buchbauer. 2015. Handbook of essential oils Science, technology, and applications. Handbook of essential Oils. CRC Press, Boca Raton, FL. Doi: https://doi.org/10.1201/b19393
  8. Castronovo, L.M., A. Vassallo, A. Mengoni, E. Miceli, P. Bogani, F. Firenzuol, R. Fani, and V. Maggini. 2021. Medicinal plants and their bacterial microbiota: a review on antimicrobial compounds production for plant and human health. Pathogens 10(2), 106. Doi: https://doi.org/10.3390/pathogens10020106
  9. Cazella, L.N., J. Glamoclija, M. Soković, J.E. Gonçalves, G.A. Linde, N.B. Colauto, and Z.C. Gazim. 2019. Antimicrobial activity of essential oil of Baccharis dracunculifolia DC (Asteraceae) aerial parts at flowering period. Front. Plant Sci. 10, 27. Doi: https://doi.org/10.3389/fpls.2019.00027
  10. Chassagne, F., T. Samarakoon, G. Porras, J.T. Lyles, M. Dettweiler, L. Marquez, A.M. Salam, S. Shabih, D.R. Farrokhi, and C.L. Quave. 2021. A systematic review of plants with antibacterial activities: a taxonomic and phylogenetic perspective. Front. Pharmacol. 8, 11. Doi: https://doi.org/10.3389/fphar.2020.586548
  11. Chaurasia, P. and S. Bharati. 2020. Research advances in the fungal world: culture, isolation, identification, classification, characterization, properties and kinetics. Nova Science Publishers.
  12. Chibane, L.B., P. Degraeve, H. Ferhout, J. Bouajila, and N. Oulahal. 2019. Plant antimicrobial polyphenols as potential natural food preservatives. J. Sci. Food Agric. 99(4), 1457-1474. Doi: https://doi.org/10.1002/jsfa.9357
  13. Chouhan, S., K. Sharma, and S. Guleria. 2017. Antimicrobial activity of some essential oils present status and future perspectives. Medicines 4(3), 58. Doi: https://doi.org/10.3390/medicines4030058
  14. Copete-Pertuz, L.S., J. Plácido, E.A. Serna-Galvis, R.A. Torres-Palma, and A. Mora. 2018. Elimination of isoxazolyl-penicillins antibiotics in waters by the ligninolytic native Colombian strain Leptosphaerulina sp. considerations on biodegradation process and antimicrobial activity removal. Sci. Total Environ. 630, 1195-1204. Doi: https://doi.org/10.1016/j.scitotenv.2018.02.244
  15. Corpogen. 2013. Corporación CorpoGen. In: https://www.corpogen.org; consulted: January, 2013.
  16. Crouch, J.A., R.J. O’Connell, P. Gan, E.A. Buiate, M.F. Torres, L.A. Beirn, K. Shirasu, and L.J. Vaillancourt. 2014. The genomics of Colletotrichum. pp. 69-102. In: Dean, R., A. Lichens-Park, and C. Kole (eds.). Genomics of plant-associated fungi: monocot pathogens. Springer, Berlin. Doi: https://doi.org/10.1007/978-3-662-44053-7_3
  17. Daly, D.C., R.O. Perdiz, P.V.A. Fine, G. Damasco, M.C. Martínez-Habibe, and L. Calvillo-Canadell. 2022. A review of Neotropical Burseraceae. Braz. J. Bot. 45, 103-137. Doi: https://doi.org/10.1007/s40415-021-00765-1
  18. Da Silva, M.B., Y.F. Figueiredo, D. Silveira, B.G. Brasileiro, M.D.C.P. Batitucci, and C.M. Jamal. 2024. Effect of some medicinal plant crude extracts on growth of Colletotrichum musae, causal agent of banana anthracnose. Rev. Bras. Plantas Med. 22(4), 193-199. Doi: https://doi.org/10.70151/49s58r48
  19. Da Silva, L.L., H.L.A. Moreno, H.L.N. Correia, M.F. Santana, and M.V. Queiroz. 2020. Colletotrichum: species complexes, lifestyle, and peculiarities of some sources of genetic variability. Appl. Microbiol. Biotechnol. 104(5), 1891-1904. Doi: https://doi.org/10.1007/s00253-020-10363-y
  20. Dastmalchi, K., D. Dorman, M. Kosarb, and R. Hiltunen. 2007. Chemical composition and in vitro antioxidant evaluation of a watersoluble Moldavian balm (Dracocephalum moldavica L.) extract. LWT - Food Sci. Technol. 40, 239-248. Doi: https://doi.org/10.1016/j.lwt.2005.09.019
  21. De Souza, A.A., B.L.S. Ortíz, R.C.R. Koga, P.F. Sales, D.B. Cunha, A.L.M. Guerra, G.C. Souza, and J.C.T. Carvalho. 2021. Secondary metabolites found among the species Trattinnickia rhoifolia Willd. Molecules 26(24), 7671. Doi: https://doi.org/10.3390/molecules26247661
  22. García-Gutiérrez, E., M.J. Mayer, P.D. Cotter, and A. Narbad. 2019. Gut microbiota as a source of novel antimicrobials. Gut Microbes. 10(1), 1-21. Doi: https://doi.org/10.1080/19490976.2018.1455790
  23. ImagenJ. Image Processing and Analysis in Java. In: http://rsbweb.nih.gov; consulted: March, 2023.
  24. Irazoki, O., S.B. Hernandez, and F. Cava. 2019. Peptidoglycan muropeptides: release, perception, and functions as signaling molecules. Front. Microbiol. 10, 500. Doi: https://doi.org/10.3389/fmicb.2019.00500
  25. Jackson, M. 2014. The mycobacterial cell envelope-lipids. Cold Spring Harb. Perspect. Med. 4(10), a021105. Doi: https://doi.org/10.1101/cshperspect.a021105
  26. Jorgensen, J.H. and J.D. Turnidge. 2015. Susceptibility test methods: dilution and disk diffusion methods. In: Jorgensen, J.H., K.C. Carroll, G. Funke, M.A. Pfaller, M.L. Landry, S.S. Richter, and D.W. Warnock (eds.). Manual of clinical microbiology. 11th ed. Wiley Online Library, ASM Press. Doi: https://doi.org/10.1128/9781555817381.ch71
  27. Khan, M.R. and Z. Haque. 2022. Major diseases of mangos. pp. 191-211. In: Khan, M.R. (ed.). Diseases of fruit and plantation crops and their sustainable management. Nova Science Publishers, New York, NY.
  28. Kwodaga, J., E.N. Kunedeb, and B. Kongyeli. 2019. Antifungal activity of plant extracts against Colletotrichum gloeosporioides (Penz.) the causative agent of yam anthracnose disease. Arch. Phytopathol. Plant Prot. 52(1-2), 218-233. Doi: https://doi.org/10.1080/03235408.2019.1604303
  29. Liu, Q., X. Meng, Y. Li, C.N. Zhao, G.Y. Tang, and H.B. Li. 2017. Antibacterial and antifungal activities of spices. Int. J. Mol. Sci. 18(6), 1283. Doi: https://doi.org/10.3390/ijms18061283
  30. Mahomoodally, M.F., M.Z. Aumeeruddy, L.J. Legoabe, S. Dall'Acqua, and G. Zengin. 2022. Plants' bioactive secondary metabolites in the management of sepsis: recent findings on their mechanism of action. Front. Pharmacol. 13, 1046523. Doi: https://doi.org/10.3389/fphar.2022.1046523
  31. Masangwa, J.I.G., T.A.S. Aveling, and Q. Kritzinger. 2013. Screening of plant extracts for antifungal activities against Colletotrichum species of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata (L.) Walp). J. Agric. Sci. 151(4), 482-491. Doi: https://doi.org/10.1017/S0021859612000524
  32. Mendoza, C.F., A.F. Celis, and M.E.S. Pachón. 2014. Herbicide effects of piper extracts on a seed bank in Fusagasugá (Colombia). Acta Hortic. 1030(9), 77-82. Doi: https://doi.org/10.17660/ActaHortic.2014.1030.9
  33. Miranda-Cadena, K., C. Marcos-Arias, E. Mateo, J.M. Aguirre-Urizar, G. Quindós, and E. Eraso. 2021. In vitro activities of carvacrol, cinnamaldehyde and thymol against Candida biofilms. Biomed Pharmacother. 143, 112218. Doi: https://doi.org/10.1016/j.biopha.2021.112218
  34. NCBI, National Center for Biotechnology Information. 2013. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; – [cited 2013]. Available from: https://www.ncbi.nlm.nih.gov/
  35. Okonta, E.O., P.F. Onyekere, P.N. Ugwu, H.O. Udodeme, V.O. Chukwube, U.E. Odoh, and C.O. Ezugwu. 2021. Pharmacognostic studies of the leaves of Hyptis suaveolens Linn. (Labiatae) (poit). Pharmacogn J. 13(3), 698-705. Doi: https://doi.org/10.5530/pj.2021.13.89
  36. Osungunna, M.O. 2020. Screening of medicinal plants for antimicrobial activity: pharmacognosy and microbiological perspectives. J. Microbiol. Biotech. Food Sci. 9(4), 727-735. Doi: https://doi.org/10.15414/jmbfs.2020.9.4.727-735
  37. Pudziuvelyte, L., M. Stankevicius, A. Maruska, V. Petrikaite, O. Ragazinskiene, G. Draksiene, and J. Bernatoniene. 2017. Chemical composition and anticancer activity of Elsholtzia ciliata essential oils and extracts prepared by different methods. Ind. Crops Prod. 107, 90-96. Doi: https://doi.org/10.1016/j.indcrop.2017.05.040
  38. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. RiceEvans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26, 12311237. Doi: https://doi.org/10.1016/s0891-5849(98)00315-3
  39. Rüdiger, A.L. and V.F. Veiga-Junior. 2013. Chemodiversity of ursane- and oleanane-type triterpenes in amazonian Burseraceae oleoresins. Chem. Biodivers. 10(6), 1142-1153. Doi: https://doi.org/10.1002/cbdv.201200315
  40. Salleh, W.M.N.H.W. and F. Ahmad. 2017. Phytochemistry and biological activities of the genus Ocotea (Lauraceae): a review on recent research results (2000-2016). J. Appl. Pharm. Sci. 7(5), 204-218. Doi: https://doi.org/10.7324/JAPS.2017.70534
  41. Sarkic, A. and I. Stappen. 2018. Essential oils and their single compounds in cosmetics a critical review. Cosmetics 5(1), 11. Doi: https://doi.org/10.3390/cosmetics5010011
  42. Sharifi-Rad, J., A. Sureda, G.C. Tenore, M. Daglia, M. Sharifi-Rad, M. Valussi, R. Tundis, M. Sharifi-Rad, M.R. Loizzo, A.O. Ademiluyi, R. Sharifi-Rad, S.A. Ayatollahi, and M. Iriti 2017. Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules 22(1), 70. Doi: https://doi.org/10.3390/molecules22010070
  43. Statistixm. 2013. 10.0.0.9. Analytical Software. Miller Landing Rd, Tallahassee, FL.
  44. Tafurt-García, G., L. Jiménez, and A. Calvo. 2015. Antioxidant capacity and total phenol content of Hyptis spp., P. heptaphyllum, T. panamensis, T. rhoifolia, and Ocotea sp. Rev. Colomb. Quim. 44(2), 28-33. Doi: https://doi.org/10.15446/rev.colomb.quim.v44n2.55217
  45. Tafurt-García, G. and A. Muñoz. 2018. Volatile secondary metabolites in cascarillo (Ocotea caparrapi (Sandino-Groot ex Nates) Dugand - Lauraceae). J. Essent. Oil-Bear. Plants 21(2), 374-387. Doi: https://doi.org/10.1080/0972060X.2018.1465856
  46. Tafurt-García, G., A. Muñoz-Acevedo, A.M. Calvo, L.F. Jiménez, and W.A. Delgado. 2014. Volatile compounds of analysis of Eriope crassipes, Hyptis conferta, H. dilatata, H. brachiata, H. suaveolens and H. mutabilis (Lamiaceae). Bol. Latinoam. Caribe Plantas Med. Aromat. 13(3), 254-269. https://www.redalyc.org/articulo.oa?id=85631010007
  47. Tafurt-García, G., E. Valenzuela, Y.S. Rodríguez, R.A. Alegría, and E. Stashenko. 2023. Volatile compounds in Piperaceae collected in Arauca-Colombia: Northeastern Region and Colombian-Venezuelan Plains. pp. 26-43. In: da Veiga Jr, V.F., I.A. Ogunwande, and J.L. Martinez (eds.). Essential oils: contributions to the chemical-biological knowledge. CRC Press; Taylor & Francis, Boca Raton, FL.
  48. Tariq, L., B.A. Bhat, S.S. Hamdani, and R.A. Mir. 2021. Phytochemistry, pharmacology and toxicity of medicinal plants. pp. 217-240. In: Aftab, T. and K.R. Hakeem (eds.). Medicinal and aromatic plants. Springer, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-030-58975-2_8
  49. Tongnuanchan, P. and S. Benjakul. 2014. Essential oils: extraction, bioactivities, and their uses for food preservation. J. Food Sci. 79(7), 1231-1249. Doi: https://doi.org/10.1111/1750-3841.12492
  50. Ustáriz, F.J., M.E. Lucena de Ustáriz, F.G. Urbina, D.M. Villamizar, L.B. Rojas, Y.E. Cordero de Rojas, J.E. Ustáriz, L.C. González, and L.M. Araujo. 2020. Composition and antibacterial activity of the Piper Eriopodon (Miq.) C.DC. essential oil from the Venezuelan Andes. Pharmacologyonline 2, 13-22.
  51. Vaou, N., E. Stavropoulou, C. Voidarou, C. Tsigalou, and E. Bezirtzoglou. 2021. Towards advances in medicinal plant antimicrobial activity: a review study on challenges and future perspectives. Microorganisms 9(10), 2041. Doi: https://doi.org/10.3390/microorganisms9102041
  52. Yang, S.K., L.-Y. Low, P. Soo-Xi Yap, K. Yusoff, C.W. Mai, K.S. Lai, and S.-H. Erin Lim. 2018. Plant-derived antimicrobials: insights into mitigation of antimicrobial resistance. Rec. Nat. Prod. 12(4), 295-316. Doi: https://doi.org/10.25135/rnp.41.17.09.058
  53. Yasmeen, S. and A. Asgar. 2014. Colletotrichum gloeosporioides (Anthracnose). pp. 337-371. In: Bautista-Baños, S. (ed.). Postharvest decay. Academic Press, London. Doi: https://doi.org/10.1016/B978-0-12-411552-1.00011-9

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede {advancedSearchLink} para este artículo.