Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Distribución espacial del riesgo potencial de marchitamiento del aguacate causado por <i>Phytophthora cinnamomi</i> en la subregión de Montes de María, Colombia

Cepa 9.1 86.5 de Phytophthora cinnamomi aislada a partir de raíces de árboles exhibiendo síntomas de marchitamiento en cultivos de aguacate en Montes de María. Foto: K. Salazar P.

Resumen

El marchitamiento del aguacate, causado por el oomycete Phytophthora cinnamomi Rands, es la enfermedad más limitante del cultivo a nivel mundial. Montes de María (MM) es la principal región productora de aguacate del Caribe Colombiano. El área de producción de aguacate en esta región, se encuentra en declive en contraposición a la tendencia mundial y nacional. Esta disminución en MM ha sido asociada a problemas sanitarios, específicamente al marchitamiento del aguacate ocasionado por P. cinnamomi. El clima es uno de los factores más importantes que determinan la distribución espacial de una especie y en el caso de los patógenos determina el nicho que facilita la colonización del hospedero. En este contexto, se tiene como propósito estimar la distribución espacial del riesgo de marchitamiento del aguacate en la subregión Montes de María. Esta estimación se realizó a partir de los datos de presencia del síntoma de marchitamiento de yemas, característico de la pudrición radicular por P. cinnamomi. Este síntoma exhibió una alta correlación con la incidencia y la severidad de la enfermedad evaluada por fincas. El modelo Maxent usado para estimar la distribución espacial de riesgo muestra una alta validación estadística (test AUC≥0,9). Este modelo ha permitido predecir las zonas donde el riesgo a pudrición radicular es más alto. Las características de las áreas con el mayor riesgo de pudrición radicular son aquellas localizadas a mayor altitud, con las temperaturas más bajas en el trimestre más frío (BIO11 ~22°C) y en el más caluroso (BIO10 ~24°C) y con la precipitación más alta durante la estación seca (BIO17 - BIO14).

Palabras clave

Pudrición radicular, Maxent, Caribe colombiano, Bioclim, marchitamiento de yemas.

PDF

Citas

  1. Aubrey, Z.G. 1980. Phytophthora cinnamomi and the diseases it causes. Amer. Phytopathol. Soc. Monogr. 10, 1-96.
  2. Bogosian V., E. Hellgren, M. Sears y R. Moody. 2012. High-resolution niche models via a correlative approach: Comparing and combining correlative and process-based information. Ecol. Model. 337-238, 63-73. Doi: https://doi.org/10.1016/j.ecolmodel.2012.04.017
  3. Burns, R.M., J.H. Miner, C.D. Gustafson, G.A. Zentmyer y W.A. Thorn. 1960. Correlation of soil series and avocado root rot damage in the Fallbrook area. Calif. Avoc. Soc. 44, 110-13.
  4. Campbell, C.L. y D.A. Neher. 1994. Estimating disease severity and incidence. pp. 117-47. En: Campbell, L. y M. Benson (eds.). Epidemiology and management of root diseases. Springer Verlag, Berlin, Heidelberg, Alemania. Doi: https://doi.org/10.1007/978-3-642-85063-9_5
  5. Castillo R., C.J. 2008. Modelamiento de la distribución de los nichos adecuados para la invasión biológica del retamo espinoso (Ilex europaeus) en la cuenca alta del Río Bogotá, vulnerabilidad y escenarios futuros. Tesis de doctorado. Pontificia Universidad Javeriana, Bogotá, Colombia.
  6. Chen, H., P.L. Morrell, V. Ashworth, M. de la Cruz y M.T. Clegg. 2009. Tracing the geographic origins of major avocado cultivars. J. Hered. 100(1), 56-65. Doi: https://doi.org/10.1093/jhered/esn068
  7. Chinchilla, M., R. Mata y A. Alvarado. 2011. Andisoles, Inceptisoles y Entisoles de la subcuenca del río Pirrís, región de los Santos, Talamanca, Costa Rica. Agron. Costarricense 35(1), 83-107.
  8. Coffey, M.D. 1987. Phytophthora root rot of avocado: an integrated approach to control in California. Plant Dis. 71(11), 1046-1052.
  9. DANE (Departamento Administrativo Nacional de Estadística). 2015. El cultivo del aguacate (Persea americana Miller), fruta de extraordinarias propiedades alimenticias, curativas e industriales (Primera parte). Boletín Mensual Insumos y Factores Asociados a la Producción Agropecuaria 40. Bogotá, Colombia.
  10. Darvas, J.M., J.C. Toerien y D.L. Milne. 1983. Injection of established avocado trees for the effective control of Phytophthora root rot. SAAGA 6, 76-77.
  11. Darvas J.M., J.C. Toerien y D.L. Milne. 1984. Control of avocado root rot by trunk injection with phosethyl-A1. Plant Dis. 68, 691-693.
  12. Erwin D.C. y O.K. Ribeiro. 1996. Phytophthora diseases worldwide. American Phytopathological Society Press, St. Paul, MN, USA.
  13. Gabor, B.K. 1990. Quantitative analysis of the resistance to Phytophthora cinnamomi in five avocado rootstocks under greenhouse conditions. Plant Dis. 74(11), 882-885. Doi: https://doi.org/10.1094/PD-74-0882
  14. Galdino T.V. da S., S. Kumar, L.S.S. Oliveira, A.C. Alfenas, L.G. Neven, A.M. Al-Sadi y M. Picanço .2016. Mapping global potential risk of mango sudden decline disease caused by Ceratocystis fimbriata. PLoS ONE 11(7). Doi: https://doi.org/10.1371/journal.pone.0159450
  15. Gallo-Llobet, L., A. Baños-Atance y A. Rodríguez-Pérez. 2006. Selección de patrones de aguacate de raza antillana tolerante-resistentes a Phytophthora cinnamomi para el control de la podredumbre de raíz. p. 238. Libro de Resúmenes, XIII Congreso de la Sociedad Española de Fitopatología, Murcia, España.
  16. Guevara V.M., M. Vertel M., A. Castellar M. y P. Blanco T. 2016. Distribución geográfica de especies de garrapatas infectadas con Babesia de zonas rurales del departamento de Sucre, Colombia. XXVI Simposio Internacional de Estadística, Sincelejo, Colombia.
  17. Hijmans R.J., S. Cameron y J. Parra. 2016. WorldClim. En: http://www.worldclim.org/version1; consulta: febrero de 2017.
  18. Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones y A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15), 1965-78. Doi: https://doi.org/10.1002/joc.1276
  19. Jiménez-Valverde, A., J.M. Lobo y J. Hortal. 2008. Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions 14(6), 885-90. Doi: https://doi.org/10.1111/j.1472-4642.2008.00496.x
  20. Jiménez-Valverde, A., A.T. Peterson, J. Soberón, J.M. Overton, P. Aragón y J.M. Lobo. 2011. Use of niche models in invasive species risk assessments. Biol. Invasions 13(12), 2785-97. Doi: https://doi.org/10.1007/s10530-011-9963-4
  21. Kottek, M., J. Grieser, C. Beck, B. Rudolph y F. Rubel. 2006. World Map of the Köppen-Geiger climate classification updated. Meteor. Zeitschr. 15(3), 259-63. Doi: https://doi.org/10.1127/0941-2948/2006/0130
  22. Kumar, S., L.G. Neven y W.L. Yee. 2014. Evaluating correlative and mechanistic niche models for assessing the risk of pest establishment. Ecosphere 5(7), 1-23. Doi: https://doi.org/10.1890/ES14-00050.1
  23. La Manna, L., S.D. Matteucci y T. Kitzberger. 2012. Modelling Phytophthora disease risk in Austrocedrus chilensis forests of Patagonia. Eur. J. For. Res. 131(2), 323-337. Doi: https://doi.org/10.1007/s10342-011-0503-7
  24. Manuel, S., H.C. Williams y S.J. Ormerod. 2002. Evaluating presence-absence models in ecology: the need to account for prevalence. J. Appl. Ecol. 38(5), 921-931. Doi: https://doi.org/10.1046/j.1365-2664.2001.00647.x
  25. Pavas, T., C.A. 2015. Organización de cadena productiva del aguacate. Consejo Nacional del Aguacate, Ministerio de Agricultura, Bogotá, Colombia.
  26. Pegg, K.G., L.M. Coates, L. Korsten y R.M. Hardig. 2002. Foliar, fruit and soilborne diseases. 2nd ed. pp. 299-339. En: Schaffer, B., B.N. Wolstenholme y A.W. Whiley (eds.). The avocado: Botany, production and uses. Wallingford, Oxon, UK. Doi: https://doi.org/10.1079/9780851993577.0299
  27. Pérez-Jiménez, R. 2008. Significant avocado diseases caused by fungi and oomycetes. Eur. J. Plant Sci. Biotechnol. 2(1), 1-24.
  28. Phillip, S.J., R.P. Anderson y R.E. Schapire. 2005. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231-259.
  29. Reeves, J.R. 1975. Behaviour of Phytophthora cinnamomi Rands in different soils and water regimes. Soil Biol. Biochem. 7(1), 19-24. Doi: https://doi.org/10.1016/0038-0717(75)90025-5
  30. Rubel F. y M. Kottek. 2010. Observed and projected climate shifts 1901–2100 depicted by world maps of the Koppen-Geiger climate classification. Meteorol. Zeitschr. 19(2), 135-41. Doi: https://doi.org/10.1127/0941-2948/2010/0430
  31. Shepherd, C.J. y B.H. Pratt. 1974. Temperature-growth relations and genetic diversity of A2 mating-type isolates of Phytophthora cinnamomi in Australia. Aust. J. Bot. 22(2), 231-49. Doi: https://doi.org/10.1071/BT9740231
  32. Tamayo, A., O. Córdoba y M.E. Londoño. 2008. Tecnología para el cultivo del aguacate. Vol. 5. Corpoica, Río Negro, Colombia.
  33. Téllez, A. 2015. Sistematización de la experiencia de Colombia responde en la zona de consolidación territorial de los Montes de María. Funicar, Cartagena, Colombia.
  34. Vega, J. 2012. El aguacate en Colombia: Estudio de caso de los Montes de María, en el Caribe colombiano. Banco de República - Economía Regional 171, 1-145.
  35. Zentmyer, G.A. 1981. The effect of temperature on growth and pathogenesis of Phytophthora cinnamomi and on growth of its avocado host. Phytopathology 71, 925-28. Doi: https://doi.org/10.1094/Phyto-71-925
  36. Zentmyer, G.A. 1984. Avocado diseases. Int. J. Pest Manag. 30(4), 388-400. Doi: https://doi.org/10.1080/09670878409370915
  37. Zentmyer, G.A., J.V. Leary, L.J. Klure y G.L. Grantham. 1976. Variability in growth of Phytophthora cinnamomi in relation to temperature. Phytopathology 66, 982-986. Doi: https://doi.org/10.1094/Phyto-66-982
  38. Zentmyer, G.A. y S.M. Mircetich. 1967. Saprophytism and persistence in soil by Phytophthora cinnamomi. Phytopathology 51, 117-24.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 1 2 3 

También puede {advancedSearchLink} para este artículo.