Desing of wind propellers for horizontal axis

Main Article Content


David Esteban Albadan-Molano
Jorge Enrique Salamanca-Céspedes
Adriana Patricia Gallego-Torres


The GEOM research seedbed of the Universidad Distrital Francisco José de Caldas is developing low and medium power wind turbines, and here we present an advance. Wind energy is a very important source of renewable energy and an excellent alternative for the transition to sustainable energy that the world needs. It is known that horizontal axis wind turbines are more efficient energetically, and that the propeller is determinant for this efficiency; therefore, the correct geometric design of the propeller is essential for an optimum wind turbine. This article analyzes the most relevant aspects in the design of a wind propeller, using MATLAB® software to illustrate its behavior, and suggests an ideal airfoil for wind applications.


Article Details


The journal authorizes the total or partial reproduction of the published article, as long as the source, including the name of the Journal, author(s), year, volume, issue, and pages are cited.

The ideas and assertions expressed by the authors are their solely responsibility and do not represent the views and opinions of the Journal or its editors.

All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.

Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.

The authors  keep copyright, however, once the work in the Journal has been published, the authors must always allude to it.


[1] A. L. Neumann, La energía eólica: principios básicos y tecnología, 2002. Available:

[2] Energía Eólica. Curso de Física Ambiental, pp. 22 – 26, Feb. 2012. Available:

[3] Y. Bazilevs, M.-C. Hsu, J. Kiendl, and D. J. Benson, “A computational procedure for prebending of wind turbine blades,” International Journal for Numerical Methods in Engineering, vol. 89 (3), pp. 323–336, 2012. DOI:

[4] T. Burton, D. Sharp, N. Jenkkins, and E. Bossanyi. Wind Energy Handbook, 2012.

[5] N. Ren, and J. Ou, “Dust effect on the performance of wind turbine airfoils,” J. Electromagnetic Analysis and Applications, vol. 1, pp.102–107, 2009. DOI:

[6] Y. Golfman, Hybrid Anisotropic Materials for Wind Power Turbine Blades, CRC Press, 2012. DOI:

[7] A. Ferrero Moya. Diseño de un aerogenerador de eje horizontal de 5 kW de potencia, Sartenejas, 2007.

[8] R. Bastianon, Cálculo y diseño de la hélice óptima para turbinas eólicas. Servicio Naval de Investigación y Desarrollo de la Armada Argentina, Buenos Aires, Argentina, 2008.

[9] D. Canalejo, X. Font. Generador eólico para uso doméstico, 2011. Available:

[10] Jayaraman. NACA 4 Digit Airfoil Generato, 2017. Available:

[11] J. Mejia, F. Chejne, O. Fernández, and I. Dynner, “Propuesta metodológica para el diseño de aspas de turbinas de viento de eje horizontal,” Rev. Energética Universidad Nacional de Colombia, vol. 33, pp.37-45, 2005.

[12] F. E. Checa, and E. E. Rosero, “Methodology for the determination of wind characteristics and assessment of wind energy potential in Túquerres-Nariño,” Revista Científica, vol. 1 (31), pp. 36-48, 2017.

[13] A. Albanesi, V. Fachinotti, I. Peralta, B. Storti, and C. Gebhardt, Application of the inverse finite element method to design wind turbine blades, Composite Structures, 2016. DOI:


Download data is not yet available.