Skip to main navigation menu Skip to main content Skip to site footer

Impacto del transporte de carga en el ambiente de Ciudad Juárez y revisión de dispositivos de reducción de carga aerodinámica para camiones pesados

Abstract

Nowadays studying the ways in which greenhouse gas emissions may be reduced from all sectors of human been activities, including the transportation sector, became extremely important. The purpose of this investigation is study environmental impact of freight transportation in cd. Juarez area and review of aerodynamic drag reduction devices for heavy trucks to better understand what technologies or practices can be applied to highway tractor and trailer combinations to reduce aerodynamic drag without negatively affecting the usefulness or profitability of the vehicles.

Keywords

aerodynamics drag, drag redaction devices, environmental impact, heavy tracks

PDF

References

[1] Technological Administration of Innovation and Research (RITA) https://www.transportation.gov/research-technology
[2] National Academy of Sciences (NAS). 2010. Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles. Committee to Assess Fuel Economy Technologies for Medium- and Heavy-Duty Vehicles. The National Academic Press.
[3] J. Leuschen and K.R. Cooper, Full-Scale Wind Tunnel Tests of Production and Prototype, Second-Generation Aerodynamic Drag-Reducing Devices for Tractor-Trailers, 06CV-222, SAE International, 2006.
[4] H. Martini, B. Bergqvist, L. Hjelm and L. Löfdahl, Aerodynamic Effects of Roof Deflector and Cab Side Extenders for Truck-Trailer Combinations, 2011-01-2284, SAE International, 2011.
[5] Cooper, K. R. 2004. Commercial Vehicle Aerodynamic Drag Reduction: Historical Perspectives as a Guide. In The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains (McCallen, R., Browand, F., and Ross, J., eds.) pp. 9-28, Springer, New York.
[6] Leuschen, J., Cooper, K. R. 2006. Full-Scale Wind Tunnel Tests of Production and Prototype, Second-Generation Aerodynamic Drag-Reducing Devices for Tractor-Trailers. SAE Paper No. 2006-01-3456.
[7] Leuschen, J., Cooper, K. R. 2006. Summary of Full-Scale Wind Tunnel Tests of Aerodynamic Drag-Reducing Devices for Tractor-Trailers. Lake Tahoe.
[8] Salari, K. 2011. DOE’s Effort to Reduce Truck Aerodynamic Drag through JointExperiments and Computations - DOE Annual Merit Review, Project ID # VSS006 May 9-13, 2011 (Presentation). Document found at http://www1.eere.energy.gov/vehiclesandfuels/pdfs/merit_review_2011/veh_sys_sim/vss006_salari_2011_o.pdf. Accessed January 2012.
[9] Platform for Aerodynamic Road Transport, found at http://www.part20.eu/en/ Accessed January 2012.
[10] Salari, K. Ortega, J. 2010. Aerodynamic Design Criteria for Class 8 Heavy Vehicles Trailer Base Devices to Attain Optimum Performance. Lawrence Livermore National Laboratory Report No. LLNL-TR-464265.
[11] Patten, J; Poole G; Mayda, W; Trailer Boat Tail Aerodynamic and Collision Study; NRC-CSTT; CSTT-HVC-TR-169; March 2010.
[12] Sinha, S. K. 2008. Improving Fuel Efficiency of Tractor Trailer Trucks with Deturbulator Aero-Drag Reduction. SAE Paper No. 2008-01-2602.
[13] Landman, D., Wood, R., Seay, W., Bledsoe, J. 2009. Understanding Practical Limits to Heavy Truck Drag Reduction. SAE Paper No. 2009-01-2890.
[14] System Drag Reduction (SDR). Road Tech for Saving and Ecology. Document found at http://sdr-sys.com/archivos/Presentation.SDR-2010-2011.pdf Accessed
[15] L. Hjelm and B. Bergqvist, European Truck Aerodynamics – A Comparison Between Conventional and CoE Truck Aerodynamics and a Look into Future Trends and Possibilities, The Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains, Volume 41, 2009.
[16] P. Castellucci and K. Salari, Computational Simulation of Tractor-Trailer Gap Flow with Drag-Reducing Aerodynamic Devices, 2005-01-3625, SAE International, 2005.
[17] Daimler, 2011. Aero trailer design study from Mercedes-Benz: drastically cutting wind resistance and fuel consumption of semitrailer tractors. Found at http://media.daimler.com/deeplink?cci=2095425 Accessed January 2012.
[18] S.K. Sinha, Improving Fuel Efficiency of Tractor Trailer Trucks with Deturbulator Aero-Drag Reduction, 2008-01-2602, SAE International, 2008

Downloads

Download data is not yet available.

Most read articles by the same author(s)