ANÁLISIS COMPARATIVO DE ASERTIVIDAD PARA TRES ÍNDICES DE ZONAS CONSTRUIDAS APLICADOS A CIUDADES COLOMBIANA
Resumen
La delimitación y caracterización espacio-temporal de las zonas construidas o urbanizadas en las ciudades es un insumo fundamental para la planificación territorial. Los Índices de Zonas Construidas son empleados para identificar las zonas
urbanas utilizando sensores remotos. Este estudio tuvo por objetivo evaluar la asertividad multitemporal (1997, 2002, 2007 y 2018) de tres Índices de Zonas Construidas (NDBI, UI e IBI) calculados en imágenes Landsat para tres ciudades
colombianas. Las imágenes fueron mejoradas a través de técnicas de Teledetección y se determinaron los Índices de Zonas Construidas teniendo en cuenta los parámetros establecidos por sus creadores. Se emplearon 700 puntos verdad terreno
(350 para zonas construidas y 350 para zonas no construidas) para establecer la asertividad multitemporal usando el Índice de Kappa. Los resultados muestran que el índice con mejor asertividad multitemporal global fue el NDBI (Kappa = 0.382),
el cual también fue el de mejor desempeño para la ciudad de mayor tamaño (Kappa = 0.566); para la ciudad de tamaño intermedio el índice más acertado correspondió al UI (Kappa = 0.545). Los Índices evaluados tuvieron valores nulos de Kappa en la ciudad de Espinal; descartando los resultados obtenidos en esta última ciudad, la asertividad global de los
índices puede incrementarse hasta 0.573. Se infiere la necesidad de realizar nuevas investigaciones que permitan evaluar a
mayor detalle la aplicabilidad y asertividad de estos índices en el contexto colombiano, al igual que los ajustes a los rangos de valores óptimos para cada ciudad en particular de acuerdo a sus características arquitectónicas.
Palabras clave
Índice Kappa, Landsat 8, Planificación urbana, Teledetección, Zona urbana
Biografía del autor/a
Julián Leal Villamil
Ingeniero forestal y candidato a doctor en Planificación y Manejo Ambiental de Cuencas Hidrográficas de la Universidad del Tolima, becario doctoral mediante convocatoria 755/2016 COLCIENCIAS. Magíster en Planificación y Manejo Ambiental de Cuencas Hidrográficas, especialista en Formulación y Desarrollo de Proyectos e Ingeniero Forestal de la Universidad del Tolima. Ha sido reconocido a nivel nacional en varias oportunidades por su desempeño académico e investigativo, Investigador en grupos de investigación reconocidos por COLCIENCIAS como son el Grupo Interdisciplinario de Investigación en Fruticultura Tropical (Universidad del Tolima – AGROSAVIA), Grupo de Investigación en Ciencias del Suelo – GRICIS (Universidad del Tolima) y el Grupo de Investigación en Cuencas Hidrográficas (Universidad del Tolima). Autor de varios artículos en el campo del sensoramiento remoto, erosión de suelos, deslizamientos y cuencas hidrográficas en revistas científicas nacionales e internacionales, a su vez, ha sido ponente en varios congresos internacionales y par evaluador para diversas publicaciones científicas de orden nacional.
Mauricio Alejandro Perea Ardila
Ingeniero Forestal, Especialista en Geomática y MSc en Geographical Information System, Investigador científico del laboratorio de SIG y Sensores remotos del Área de Manejo integrado de Zona Costera del Centro de Investigaciones Oceanográficas e Hidrográficas del Pacífico-CCCP, experiencia interpretación y procesamiento de imágenes de sensores remotos de observación de la tierra en aplicaciones para la gestión y administración de los recursos naturales en ecosistemas andinos y marino-costeros; experiencia específica en el área de la Geomática para el monitoreo de bosques y el análisis espacial de información geográfica.
Gabriel Alexis Santa Ramírez
Ingeniero forestal de la Universidad del Tolima, ha sido autor de artículos en revistas indexadas nacionales al igual que ponente en las IX Jornadas de Educación en Percepción Remota y SIG para Centroamérica y el Caribe “Educación e innovación para el desarrollo sostenible”. Además, autor principal del artículo científico “caracterización morfométrica de deslizamientos presentados en la cuenca del río Combeima (Ibagué - Tolima, Colombia)”.
Referencias
- W. Tu et al., “Portraying Urban Functional Zones by Coupling Remote Sensing Imagery and Human Sensing Data,” Remote Sen., vol. 10, no. 1, pp. 1-20, Ene. 2018. https://doi. 10.3390/rs10010141 DOI: https://doi.org/10.3390/rs10010141
- S. S. Bhatti and N. K. Tripathi, “Built-up area extraction using Landsat 8 OLI imagery,” GIScience Remote Sens., vol. 51, no. 4, pp. 445-467, Jul. 2014. https://doi. 10.1080/15481603.2014.939539 DOI: https://doi.org/10.1080/15481603.2014.939539
- R. C. Estoque and Y. Murayama, “Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat-8 OLI/TIRS imageries: A comparative assessment of various spectral indices,” Ecol. Indic., vol. 56, pp. 205-217, Sep.2015. https://doi. 10.1016/j.ecolind.2015.03.037 DOI: https://doi.org/10.1016/j.ecolind.2015.03.037
- H. Xu, “A new index for delineating built‐up land features in satellite imagery,” Int. J. Remote Sens., vol. 29, no. 14, pp. 4269-4276, Jul. 2008. https://doi. 10.1080/01431160802039957. DOI: https://doi.org/10.1080/01431160802039957
- Y. Zha, J. Gao, and S. Ni, “Use of normalized difference built-up index in automatically mapping urban areas from TM imagery,” Int. J. Remote Sens., vol. 24, no. 3, pp. 583-594, Ene. 2003. https://doi.10.1080/01431160304987 DOI: https://doi.org/10.1080/01431160304987
- M. Kawamura, S. Jayamanna, and Y. Tsujiko, “Relation between social and environmental conditions in Colombo Sri Lanka and the urban index estimated by satellite remote sensing data,” Int. Soc. Photogramm. Remote Sens., vol. 31, no. 7, pp. 321-326, 1996. Disponible en: https://a-a-r-s.org/proceeding/ACRS1996/Papers/GLE96-3.htm
- M. Ichsan Ali, A. Hafid Hasim, and M. Raiz Abidin, “Monitoring the Built-up Area Transformation Using Urban Index and Normalized Difference Built-up Index Analysis,” Int. J. Eng., vol. 32, no. 5, May 2019. Disponible en: http://eprints.unm.ac.id/13396/8/Turnitin_Monitoring%20the%20Built-up%20Area%20Transformation%20Using%20Urban%20Index%20and%20Normalized%20Difference%20Built-up%20Index%20Analysis.pdf DOI:10.5829/ije.2019.32.05b.04 DOI: https://doi.org/10.5829/ije.2019.32.05b.04
- Shahfahad et al., “Indices based assessment of built-up density and urban expansion of fast growing Surat city using multi-temporal Landsat data sets,” GeoJournal, vol. 86, no. 4, pp. 1607-1623, Ago. 2021. https://doi.10.1007/s10708-020-10148-w DOI: https://doi.org/10.1007/s10708-020-10148-w
- P. Sinha, N. K. Verma, and E. Ayele, “Urban Built-up Area Extraction and Change Detection of Adama Municipal Area using Time-Series Landsat Images,” Int. J. Adv. Remote Sens. GIS, vol. 5, no. 1, pp. 1886-1895, Ago. 2016. https://doi. 10.23953/cloud.ijarsg.67 DOI: https://doi.org/10.23953/cloud.ijarsg.67
- Abhishek Bhatt, S. K. Ghosh, and Anil Kumar, “Spectral Indices Based Change Detection in an Urban Area Using Landsat Data,” en Proceedings of Fifth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, K. Pant, M., Deep, K., Bansal, J., Nagar, A., Das, Ed. Singapur: Springer, 2016, pp. 425-441. https://doi.org/10.1007/978-981-10-0451-3_39 DOI: https://doi.org/10.1007/978-981-10-0451-3_39
- C. Salas Pérez, D. Coy Castro, K. Acuña Ramírez, L. Páez Cuervo, and E. Upegui, “Crecimiento urbano e impermeabilización del suelo alrededor de la Reserva Forestal Thomas van der Hammen, en la ciudad de Bogotá,” Ambient. y Desarro., vol. 23, no. 44, Feb. 2019. https://doi.10.11144/Javeriana.ayd23-44.cuis DOI: https://doi.org/10.11144/Javeriana.ayd23-44.cuis
- Departamento Administrativo Nacional de Estadística, “Proyecciones de población municipal para el periodo 2018 – 2035 con base en el CNPV 2018,” Secretaría Distrital de Planeación, 2019. Disponible en: https://www.sdp.gov.co/gestion-estudios-estrategicos/estudios-macro/censo-2018/proyecciones-de-poblacion.
- USGS, “Landsat Collection 2 level-1,” EarthExplorer, 2021. Disponible en: https://earthexplorer.usgs.gov/.
- A. Ariza, “Descripción y Corrección de Productos Landsat 8 LDCM (Landsat Data Continuity Mission) Versión 1.0,” 2013. Disponible en: https://www.un-spider.org/sites/default/files/LDCM-L8.R1.pdf
- G. Yin, G. Mariethoz, and M. McCabe, “Gap-Filling of Landsat 7 Imagery Using the Direct Sampling Method,” Remote Sens., vol. 9, no. 1, pp. 1-20, Dic.2016. https://doi. 10.3390/rs9010012 DOI: https://doi.org/10.3390/rs9010012
- QGIS, “QGIS Development Team ‘QGIS,’” Open Source Geospatial Foundation, 2019. https://qgis.org/es/site/.
- R. G. Congalton, “A review of assessing the accuracy of classifications of remotely sensed data,” Remote Sens. Environ., vol. 37, no. 1, pp. 35-46, Jul. 1991,https://doi. 10.1016/0034-4257(91)90048-B DOI: https://doi.org/10.1016/0034-4257(91)90048-B
- S. V. Stehman, “Sampling designs for accuracy assessment of land cover,” Int. J. Remote Sens., vol. 30, no. 20, pp. 5243-5272, Sep. 2009. https://doi.10.1080/01431160903131000 DOI: https://doi.org/10.1080/01431160903131000
- J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educ. Psychol. Meas., vol. 20, no. 1, pp. 37-46, Abr. 1960.https://doi.10.1177/001316446002000104 DOI: https://doi.org/10.1177/001316446002000104
- J. R. Landis and G. G. Koch, “The Measurement of Observer Agreement for Categorical Data,” Biometrics, vol. 33, no. 1, p. 159, Mar. 1977. https://doi.10.2307/2529310 DOI: https://doi.org/10.2307/2529310
- Y. XI, N. X. Thinh, and C. LI, “Preliminary comparative assessment of various spectral indices for built-up land derived from Landsat-8 OLI and Sentinel-2A MSI imageries,” Eur. J. Remote Sens., vol. 52, no. 1, pp. 240-252, Ene. 2019 https://doi.10.1080/22797254.2019.1584737 DOI: https://doi.org/10.1080/22797254.2019.1584737
- D. K. Ghosh, A. C. Mandal, R. Majumder, P. Patra, and G. S. Bhunia, “Analysis for Mapping of Built-Up Area Using Remotely Sensed Indices – A Case Study of Rajarhat Block in Barasat Sadar Sub-Division in West Bengal (India),” J. Landsc. Ecol., vol. 11, no. 2, pp. 67-76, Nov. 2018. https://doi.10.2478/jlecol-2018-0007 DOI: https://doi.org/10.2478/jlecol-2018-0007
- F. Yulianto, B. Tjahjono, and S. Anwar, “Detection Settlements and Population Distribution Using GIS And Remotely Sensed Data, In The Surrounding Area of Merapi Volcano, Central Java, Indonesia,” Int. J. Emerg. Technol. Adv. Eng., vol. 4, no. 3, pp. 1-10, Mar. 2014. Disponible en: https://ijetae.com/files/Volume4Issue3/IJETAE_0314_01.pdf