EVALUATION OF THE STRUCTURAL, MORPHOLOGICAL MAGNETIC PROPERTIES OF THE Bi1-XSmXFeO3 SYSTEM
DOI:
https://doi.org/10.19053/1900771X.v22.n2.2022.15024Palabras clave:
estado sólido, ferrita de bismuto, samario, dopajeResumen
Este artículo reporta la síntesis del sistema Bi1-xSmxFeO3 (x = 0.00, 0.02, 0.04, 0.06, 0.08 y 0.10) obtenido por el método de
reacción en estado sólido a 1073.15 K durante 15 h. La caracterización permitió evaluar el efecto de la inserción de Sm3+ sobre las propiedades estructurales, morfológicas y magnéticas de la ferrita de bismuto. La caracterización estructural se realizó mediante Difracción de Rayos X (XRD) y refinamiento de Rietveld, lo que indica la formación de una fase romboédrica
mayoritaria del grupo espacial R3c (161) con una proporción superior a la reportada hasta ahora. La caracterización morfológica mediante microscopía electrónica de barrido (SEM) permitió concluir que la inserción de samario disminuye el tamaño de partícula de 7.5 μm a 2.5 μm, gracias al menor radio iónico, que también condujo a la contracción de los parámetros reticulares. El análisis magnético mostró un comportamiento ferromagnético típico en todas las muestras sintetizadas, con la presencia de una transición PM-AFM a 260 K.
Descargas
Citas
K. S. Nalwa & A. Garg, “Phase evolution, magnetic and electrical properties in Sm-doped bismuth ferrite”. Journal of Applied Physics, 2008, vol. 103(4), pp. 044101. https://doi.org/10.1063/1.2838483 DOI: https://doi.org/10.1063/1.2838483
P. Uniyal, K. L. Yadav, “Pr doped bismuth ferrite ceramics with enhanced multiferroic properties”. Journal of Physics: Condensed Matter, 2009, vol. 21 (40), pp. 405901. https://doi.org/10.1088/0953-8984/21/40/405901 DOI: https://doi.org/10.1088/0953-8984/21/40/405901
P. C. Sati, P. C. Sati, M. Arora, S. Chauhan, M. Kumar, S. Chhoker, “Structural, magnetic, vibrational and impedance properties of Pr and Ti codoped BiFeO3 multiferroic ceramics. Ceramics International, vol. 40(6), pp. 7805-7816, 2014. https://doi.org/10.1016/j.ceramint.2013.12.124 DOI: https://doi.org/10.1016/j.ceramint.2013.12.124
J. M. Hu, L. Q. Chen, C. W. Nan, “Multiferroic heterostructures integrating ferroelectric and magnetic materials”. Advanced materials, vol. 28(1), pp, 15-39, 2016. https://doi.org/10.1002/adma.201502824 DOI: https://doi.org/10.1002/adma.201502824
B. H. Toby & R. B. Von Dreele, “GSAS-II: the genesis of a modern open-source all-purpose crystallography software package”. Journal of Applied Crystallography, 2013, vol. 46, no 2, pp. 544-549. https://doi.org/10.1107/S0021889813003531 DOI: https://doi.org/10.1107/S0021889813003531
W. Kraus & G. Nolze, “POWDER CELL–a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns”. Journal of applied Crystallography, 1996, vol. 29, no 3, pp. 301-303. https://doi.org/10.1107/S0021889895014920 DOI: https://doi.org/10.1107/S0021889895014920
K. Momma & F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data”. Journal of applied crystallography, 2011, vol. 44, no 6, pp. 1272-1276. https://doi.org/10.1107/S0021889811038970 DOI: https://doi.org/10.1107/S0021889811038970
A. M. Morales-Rivera, I. F. Betancourt-Montañez, S. A. Martínez-Ovalle, Ó. H. Pardo-Cuervo, J. A. Mejía-Gómez, S. Segura-Peña, C. A. Parra-Vargas, “Structural and magnetic properties of the Bi1-xLuxFeO3 (x= 0.00, 0.02 and 0.04) system”. Dyna, 2020, vol. 87, no 215, pp. 84-89. https://doi.org/10.15446/dyna.v87n215.83538 DOI: https://doi.org/10.15446/dyna.v87n215.83538
J. Bielecki, P. Svedlindh, D. T. Tibebu, S. Cai, S. G. Eriksson, L. Börjesson, C. S. Knee, “Structural and magnetic properties of isovalently substituted multiferroic BiFeO3: insights from Raman spectroscopy”. Physical Review B, 2012, vol. 86, no 18, pp. 184422. DOI: https://doi.org/10.1103/PhysRevB.86.184422 DOI: https://doi.org/10.1103/PhysRevB.86.184422
N. Zhang, J. Q. Ding, Y. P. Wang, X. N. Liu, Y. Q. Li, M. F. Liu, Z. M. Fu, Y. W. Yang, J. Su, G. L. Song, F. Yang, Y. Y. Guo and J-M Liu, “Enhanced high temperature ferromagnetism in Bi1−xRxFeO3 (R= Dy, Y) compounds”. Journal of Physics: Condensed Matter, 2021, vol. 33, no 13, pp. 135803. https://doi.org/10.1088/1361-648X/abdb10 DOI: https://doi.org/10.1088/1361-648X/abdb10
J. G. Park, M. D. Le, J. Jeong and S. Lee, “Structure and spin dynamics of multiferroic BiFeO3”. Journal of Physics: Condensed Matter, 2014, vol. 26, no 43, pp. 433202. https://doi.org/10.1088/0953-8984/26/43/433202 DOI: https://doi.org/10.1088/0953-8984/26/43/433202
R. Köferstein, “Synthesis, phase evolution and properties of phase-pure nanocrystalline BiFeO3 prepared by a starch-based combustion method”. Journal of alloys and compounds, 2014, vol. 590, pp. 324-330. https://doi.org/10.1016/j.jallcom.2013.12.120 DOI: https://doi.org/10.1016/j.jallcom.2013.12.120
T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh and S. S. Wong, “Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles”. Nano letters, 2007, vol. 7, no 3, pp. 766-772. https://doi.org/10.1021/nl063039w DOI: https://doi.org/10.1021/nl063039w
E. R. Ochoa-Burgos, C. A. Parra-Vargas, J. A. Mejía-Gómez & E. de Grave, “Study of the structural and magnetic properties of the system Bi1-xYxFeO3 x= 0 and 0.07 using Mössbauer spectroscopy”. Dyna, 2018, vol. 85, no 207, pp. 22-28. https://doi.org/10.15446/dyna.v85n207.68421 DOI: https://doi.org/10.15446/dyna.v85n207.68421
D. V. Karpinsky, A. Pakalniškis, G. Niaura, D. V. Zhaludkevich, A. L. Zhaludkevich, S. I. Latushka, A. Kareiva, “Evolution of the crystal structure and magnetic properties of Sm-doped BiFeO3 ceramics across the phase boundary region”. Ceramics International, 2021, vol. 47, no 4, pp. 5399-5406. https://doi.org/10.1016/j.ceramint.2020.10.120 DOI: https://doi.org/10.1016/j.ceramint.2020.10.120
C. A. Narváez, C. F. Vilaquirán-Raigoza, A. P. González-Nieva, “Modificación de las propiedades estructurales, eléctricas y magnéticas del BiFeO3 por la incorporación de Ba y Nb”. Química Nova, 2017, vol. 40, no.2, p. 182-191. http://dx.doi.org/10.21577/0100-4042.20160185 DOI: https://doi.org/10.21577/0100-4042.20160185
D. Maurya, H. Thota, A. Garg, B. Pandey, P. Chand and H. C. Verma, “Magnetic studies of multiferroic Bi1−xSmxFeO3 ceramics synthesized by mechanical activation assisted processes”. Journal of Physics: Condensed Matter, 2008, vol. 21, no 2, pp. 026007. https://doi.org/10.1088/0953-8984/21/2/026007 DOI: https://doi.org/10.1088/0953-8984/21/2/026007
M. A. Basith, A. Billah, M. A. Jalil, N. Yesmin, M. A. Sakib, E. K. Ashik, B. Ahmmad, “The 10% Gd and Ti co-doped BiFeO3: a promising multiferroic material”. Journal of Alloys and Compounds, 2017, vol. 694, pp. 792-799. https://doi.org/10.1016/j.jallcom.2016.10.018 DOI: https://doi.org/10.1016/j.jallcom.2016.10.018
T. Durga Rao & S. Asthana, “Evidence of improved ferroelectric phase stabilization in Nd and Sc co-substituted BiFeO3”. Journal of Applied Physics, 2014, vol. 116, no 16, p. 164102. https://doi.org/10.1063/1.4898805 DOI: https://doi.org/10.1063/1.4898805
L. M. Ramirez-Guzmán, A. F. Cruz-Pacheco, J. A. Gómez-Cuaspud & C. A. Parra-Vargas, “Structural and magnetic properties of gadolinium modified BiFeO3”. Materials Science Poland, 2020, vol. 38. https://doi.org/10.2478/msp-2020-0075 DOI: https://doi.org/10.2478/msp-2020-0075

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores deben firmar y enviar la Autorización de evaluación y publicación del artículo suministrada por la Revista, en la cual se consignan todos los aspectos involucrados a los Derechos de Autor.
Todos los artículos de la Revista Ingeniería Investigación y Desarrollo son difundidos bajo la licencia Creative Commons de Atribución (BY).
Declaración de privacidad
Los nombres y direcciones de correo electrónico introducidos en esta revista se usarán exclusivamente para los fines establecidos en ella y no se proporcionarán a terceros o para su uso con otros fines.