Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Arquitectura reconfigurable basada en redes de difracción de Bragg para redes convergentes indoor ópticas

Resumen

Este artículo presenta una propuesta para la implementación de reconfiguración dinámica de canales ópticos en futuras arquitecturas de red tipo indoor. La propuesta se basa en las características de sintonización y perfil de rechazo de Redes de Difracción de Bragg (FBG) para implementar estrategias de distribución de servicios de tipo Unicast, Broadcast y Multicast a usuarios en redes indoor tipo campus. La demostración experimental, que incluye dos diferentes implementaciones, muestra resultados con un 1% en promedio de degradación en la magnitud del vector de error (EVM) para los servicios inalámbricos y penalizaciones de potencia de hasta 2,2 dB de penalización para una tasa de error de bit (BER) de 1x10-12 para los servicios fijos.

Palabras clave

asignación dinámica de canales, filtros ópticos, redes de difracción de bragg, redes ópticas

PDF (English)

Archivo(s) complementario(s)

Sin título (English) Sin título (English) Sin título (English) Sin título (English) Sin título (English) Sin título (English) Sin título (English) Sin título (English)

Citas

  1. Abraha, S.T., Tran, N.C., Okonkwo, C.M., Chen, H.-S., Tangdiongga, E., Koonen, A. M. J. (2011). Service multicasting by all-optical routing of 1 Gb/s IR-UWB for in-building networks. Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference.
  2. DOI: http://dx.doi.org/10.1364/nfoec.2011.jwa068
  3. ETSI. (2016). Digital Video Broadcasting (DVB), Implementation guidelines for the use of Video and Audio Coding in Contribution and Primary Distribution Applications based on the MPEG-2 Transport Stream. ETSI TS 102 154, 2004 [Consulted 15 April 2016]. Available http://www.etsi.org/deliver/etsi_ts/102100_102199/102154/01.02.01_60/ts_102154v010201p.pdf
  4. Erdogan, T. (1997). Fiber grating spectra. J. Lightwave Technol. 15(8), pp. 1277-1294. DOI: 10.1109/50.618322.
  5. DOI: http://dx.doi.org/10.1109/50.618322
  6. Hanatani, S. (2013). Overview of global FTTH market and state-of-the-art technologies. 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS).
  7. Harbaoui, M., Martini, B., Castoldi, P. (2013). Dynamic network resource allocation for inter-data centers communications. Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference.
  8. Hill, K.O, Meltz, G. (1997). Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 15(8). pp. 1263-1276. DOI. 0733-8724(97)05932-X.
  9. DOI: http://dx.doi.org/10.1109/50.618320
  10. Jiang, M., Zhihui, Yang., Athale, A. (2008). A Model-Based Approach to Implementing Real-Time Mobile Services. 32nd Annual IEEE International Computer Software and Applications.
  11. DOI: http://dx.doi.org/10.1109/compsac.2008.125
  12. Koonen, A. M. J., Pizzinat, A., Tangdiongga, E., Guignard, P., Jung, H. D., Boom, H.P.A. (2009). In-building optical network architectures for converged services delivery. 14th European Conference on Networks and Optical Communications/4th Conference on Optical Cabling and Infrastructure (NOC/OC&I).
  13. Koonen, A. M. J., Tran, N.C., Tangdiongga, E. (2011). The merits of reconfigurability in WDM-TDM optical in-building networks. Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference.
  14. DOI: http://dx.doi.org/10.1364/nfoec.2011.jwa063
  15. Koonen, A. M. J., Van den Boom, H. P. A., Martinez, E. O., Guignard, P., Tangdiongga, E. (2011). Cost optimization of optical in-building networks. 37th European Conference and Exhibition on Optical Communication (ECOC).
  16. DOI: http://dx.doi.org/10.1364/ECOC.2011.We.10.P1.114
  17. Nguyen-Cac, Tran., Hyun-Do, J., Okonkwo, C., Tangdiongga, E., Koonen, T. (2012). Dynamically Delivering Radio Signals by the Active Routing Optical Access Network. IEEE Photonics Technology Letters, 24(3). pp. 182-184. DOI. 10.1109/LPT.2011.2175910.
  18. DOI: http://dx.doi.org/10.1109/LPT.2011.2175910.
  19. Olabarriaga, S. D., Glatard, T., de Boer, P.T. (2010). A Virtual Laboratory for Medical Image Analysis. IEEE Transactions on Information Technology in Biomedicine. 14(4). pp. 979-985. DOI:
  20. http://dx.doi.org/10.1109/TITB.2010.2046742.
  21. Politi, C., Anagnostopoulos, V., Matrakidis, C., Stavdas, (2012). A. Routing in dynamic future flexi-grid optical networks. 16th International Conference on Optical Network Design and Modeling (ONDM). DOI: http://dx.doi.org/10.1109/ondm.2012.6210199
  22. Puerto, G., Mora, J., Ortega, B.; Capmany, J., Grassi, F. (2010). Fiber Bragg Grating-based architectures for reconfigurable services in in-building networks. Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS).
  23. DOI: http://dx.doi.org/10.1364/CLEO_APPS.2010.ATuA3
  24. Yang, H., Shi, Y., Okonkwo, C.M., Tangdiongga, E., Koonen, A. M. J. (2010). Dynamic capacity allocation in radio-over-fiber links. IEEE Topical Meeting on Microwave Photonics (MWP).
  25. DOI: http://dx.doi.org/10.1109/mwp.2010.5664150
  26. Zou, S., Okonkwo, C.M., Cao, Z., Tran, N.C., Tangdiongga, E., Koonen, A.M.J. (2012). Dynamic optical routing and simultaneous generation of millimeter-wave signals for in-building access network. Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference
  27. DOI: http://dx.doi.org/10.1364/ofc.2012.oth3g.6

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a