Skip to main navigation menu Skip to main content Skip to site footer

Presence of contamination by As Cd, As, Pb, Se, and Hg in coals of the Cundiboyacense area, Colombia

Abstract

Coals of Cundiboyacense area were studied in order to determine their presence and quantify of content of contaminants such as cadmium (Cd), arsenic (As), lead (Pb), selenium (Se), and mercury (Hg), which are compared with Clarke index for coals of the same rank. Coal samples were taken from active mining fronts and are analyzed by proximate analysis, petrographic and inductively coupled plasma mass spectrometry (ICP-MS). The results show that analyzed samples contained metals such as Pb (15.5 mg•kg-1), Se (16.05 mg•kg-1), Cd (0.55 mg•kg-1) and As (16.05 mg•kg-1) above the world average for coal of the same rank and higher concentrations than the carboniferous area of northern Colombia, the Hg content is low (< 0.08 mg•kg-1). The content of these elements generates environmental concern. According to the Environmental Protection Agency of US (EPA) the maximum allowed for Se, Pb, and Cd is 0.05 mg•kg-1(ppm). It is suggested that conducting specific studies that allow prefetching and / or use of coals.

Keywords

pollutants, petrographic characteristics, proximate analysis, coal, Cundinamarca, Boyacá.

PDF (Español)

Author Biography

Olga Patricia Gómez-Rojas

Ninguna


References

  1. Brownfield, M.E., Affolter, R.H., Cathcart, J.D., Johnson, S.Y., Brownfield, I.K., & Rice, C.A. (2005). Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No. 1 mine, King County, Washington, USA. International Journal Coal Geology, 63 (3–4), 247–275. doi:10.1016/j.coal.2005.03.021
  2. Chen, Z., Liu, Y., Qin, P., Zhang, B., Lester, L., Chen, C., & Guo, Y. (2015). Environmental externality of coal use in China : Welfare effect and tax regulation. Applied Energy, 156, 16–31. doi:10.1016/j.apenergy.2015.06.066
  3. Cutruneo, C. M. N. L., Oliveira, M. L. S., Ward, M. L. S., Hower, J. C., De Brum, I. A. S., Sampaio, C. H., Kautzmann, R. M., Taffarel, S. R., Teixeira, E. C., & Silva, L. F. O. (2014). A mineralogical and geochemical study of three Brazilian coal cleaning rejects : Demonstration of electron beam applications. International Journal of Coal Geology, 130, 33–52. doi:10.1016/j.coal.2014.05.009
  4. Dai, S., Chou, C., Yue, M., Luo, K., & Ren, D. (2005). Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield , Guizhou , China : influence from siliceous and iron-rich calcic hydrothermal fluids. International Journal Coal Geology, 61, 241–258. doi:10.1016/j.coal.2004.09.002
  5. Dai, S., Ren, D., Tang, Y., Yue, M., & Hao, L. (2005). Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. International Journal of Coal Geology, 61 (1–2), 119–137. doi:10.1016/j.coal.2004.07.003
  6. Dai, S., Wang, X., Seredin, V. V., Hower, J. C., Ward, C. R., O’Keefe, J. M. K., Huang, W., Li, T., Li, X., Liu, H., Xue, W., & Zhao, L. (2012). Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. International Journal of Coal Geology, 90–91, 72–99. doi:10.1016/j.coal.2011.10.012
  7. Diehl, S. F., Goldhaber, M. B., Koenig, A. E., Lowers, H. A., & Ruppert, L. F. (2012). Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals : Evidence for multiple episodes of pyrite formation. International Journal of Coal Geology, 94, 238–249. doi:10.1016/j.coal.2012.01.015
  8. E.U.S. Environmental Protection Agency [EPA]. (2015). Policy assessment for the review of the lead national ambient air quality standards. Recuperado de: https://nepis.epa.gov/Exe/ZyNET.exe/P100ITJD.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2011+Thru+2015&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C11thru15%5CTxt%5C00000010%5CP100ITJD.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
  9. Fu, B., Liu, G., Liu, Y., Cheng, S., Qi, C., & Sun, R. (2016). Coal quality characterization and its relationship with geological process of the Early Permian Huainan coal deposits, southern North China. Journal of Geochemical Exploration, 166, 33–44. doi:10.1016/j.gexplo.2016.04.002
  10. Jongwana, L.T., & Crouch, A.M. (2012). Mercury speciation in South African coal. Fuel, 94, 234–239. doi:10.1016/j.fuel.2011.09.033
  11. Ketris, M. P., & Yudovich, Y. E. (2009). Estimations of clarkes for carbonaceous biolithes : World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78 (2), 135–148. doi:10.1016/j.coal.2009.01.002
  12. Kostova, I., Vassileva, C., Dai, C., Hower, J.C., & Apostolova, D. (2013). Influence of surface area properties on mercury capture behaviour of coal fly ashes from some Bulgarian power plants. International Journal of Coal Geology, 116–117, 227–235. doi:10.1016/j.coal.2013.03.008
  13. Lachas, H., Richaud, R., Herod, A.A., Dugwell, D.R. Kandiyoti, R., & Jarvis, K. E. (1999). Determination of 17 trace elements in coal and ash reference materials by ICP-MS applied to milligram sample sizes. Analyst, 124 (2), 177–184. doi: 10.1039/A807849A
  14. Laus, R., Geremias, R., Vasconcelos, H. L., Laranjeira, M. C. M., & Fávere, V. T. (2007). Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres. Journal Hazardous Materials, 149 (2), 471–474. doi:10.1016/j.jhazmat.2007.04.012
  15. Li, J., Zhuang, X., & Querol, X. (2011). Trace element affinities in two high-Ge coals from China. Fuel, 90 (1), 240–247. doi:10.1016/j.fuel.2010.08.011
  16. Li, J., Zhuang, X., Querol, X., Font, O., Izquierdo, M. & Wang, M. (2014). New data on mineralogy and geochemistry of high-Ge coals in the Yimin coalfield, Inner Mongolia, China. International Journal of Coal Geology, 125, 10–21. doi:10.1016/j.coal.2014.01.006
  17. Liu, G., Zheng, L., Zhang, Y., Qi, C., Chen, Y. & Peng, Z. (2007). Distribution and mode of occurrence of As, Hg and Se and Sulfur in coal Seam 3 of the Shanxi Formation,Yanzhou Coalfield, China. International Journal of Coal Geology, 71 (2–3), 371–385. doi:10.1016/j.coal.2006.12.005
  18. Liu, J., Yang, Z., Yan, X., Ji, D., Yang, Y., & Hu, L. (2015). Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals. Fuel, 156, 190–197. doi:10.1016/j.fuel.2015.04.034
  19. Martínez-Bernal, M. S. (2013). Determinación de la productividad y competitividad de la pequeña minería del distrito minero del norte de Boyacá. Revista de Investigación, Desarrollo e Innovación, 3 (2), 72-86. doi: 10.19053/20278306.2168
  20. Martínez-Ovalle, S., Reyes-Caballero, F., & González-Puin, L.X. (2013). Protección radiológica a trabajadores y público en instalaciones que operan radioisótopos industriales. Revista de Investigación, Desarrollo e Innovación, 3 (2), 120-124. doi: 10.19053/20278306.2166
  21. Morales, W., & Carmona, I. (2007). Estudio de algunos elementos traza en carbones de la cuenca Cesar – Ranchería, Colombia. Boletín ciencias la tierra, 20, 75–87. Recuperado de http://www.revistas.unal.edu.co/index.php/rbct/article/view/728
  22. Ohki, A., Taira, M., Hirakawa, S., Haraguchi, K., Kanechika, F., Nakajima, T., & Takanashi, H. (2014). Determination of mercury in various coals from different countries by heat-vaporization atomic absorption spectrometry: Influence of particle size distribution of coal. Microchemical Journal, 114, 119–124. doi:10.1016/j.microc.2013.12.012
  23. Saha, D., Chakravarty, S., Shome, D., Basariya, M. R., Kumari, A., Kumar, A., Chatterjee, D., Adhikari, J. & Chatterjee, D. (2016). Distribution and affinity of trace elements in Samaleswari coal, Eastern India. Fuel, 181, 376–388. doi:10.1016/j.fuel.2016.04.134
  24. Seredin, V. V., & Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94, 67–93. doi:10.1016/j.coal.2011.11.001
  25. Seredin, V.V. (2012). From coal science to metal production and environmental protection : A new story of success. International Journal of Coal Geology, 90–91, 1–3. doi:10.1016/j.coal.2011.11.006
  26. Seredin, V.V., & Finkelman, R.B. (2008). Metalliferous coals: A review of the main genetic and geochemical types. International Journal of Coal Geology, 76 (4), 253–289. doi:10.1016/j.coal.2008.07.016
  27. Seredin, V.V., Dai, S., Sun, Y., & Chekryzhov, I.Y. (2013). Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Applied Geochemistry, 31, 1–11. doi:10.1016/j.apgeochem.2013.01.009
  28. Stanislav, C. G. V., Vassilev, V., & Eskenazy, G.M. (2001). Behaviour of elements and minerals during preparation and combustion of the Pernik coal, Bulgaria. Fuel Processing Technology, 72 (2), 103-129. doi:10.1016/S0378-3820(01)00186-2
  29. Unidad de Planeación Minero-Energética [UPME]. (2005). La cadena del carbón. El carbón colombiano fuente de energía para el mundo. Recuperado de: http://www.upme.gov.co/Docs/Cadena_carbon.pdf
  30. Yoshiie, Y., Taya, Y., Ichiyanagi, T., Ueki, Y, & Naruse, I. (2013). Emissions of particles and trace elements from coal gasification. Fuel, 108, 67–72. doi:10.1016/j.fuel.2011.06.011
  31. Yuepeng, P., Tian, S., Xingru, L., Sun, Y., Li, Y., Wentworth, G. R., & Wang, Y. (2015). Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions. Science of Total Environment, 537, 9–22. doi: 10.1016/j.scitotenv.2015.07.060
  32. Zhang, J., Ren, D., Zhu, Y., & Chou. (2004). Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in southwestern Guizhou , China. International Journal of Coal Geology, 57, 49–61. doi:10.1016/j.coal.2003.07.001
  33. Brownfield, M.E., Affolter, R.H., Cathcart, J.D., Johnson, S.Y., Brownfield, I.K., & Rice, C.A. (2005). Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No. 1 mine, King County, Washington, USA. International Journal Coal Geology, 63 (3–4), 247–275. doi:10.1016/j.coal.2005.03.021 DOI: https://doi.org/10.1016/j.coal.2005.03.021
  34. Chen, Z., Liu, Y., Qin, P., Zhang, B., Lester, L., Chen, C., & Guo, Y. (2015). Environmental externality of coal use in China : Welfare effect and tax regulation. Applied Energy, 156, 16–31. doi:10.1016/j.apenergy.2015.06.066 DOI: https://doi.org/10.1016/j.apenergy.2015.06.066
  35. Cutruneo, C. M. N. L., Oliveira, M. L. S., Ward, M. L. S., Hower, J. C., De Brum, I. A. S., Sampaio, C. H., Kautzmann, R. M., Taffarel, S. R., Teixeira, E. C., & Silva, L. F. O. (2014). A mineralogical and geochemical study of three Brazilian coal cleaning rejects : Demonstration of electron beam applications. International Journal of Coal Geology, 130, 33–52. doi:10.1016/j.coal.2014.05.009 DOI: https://doi.org/10.1016/j.coal.2014.05.009
  36. Dai, S., Chou, C., Yue, M., Luo, K., & Ren, D. (2005). Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield , Guizhou , China : influence from siliceous and iron-rich calcic hydrothermal fluids. International Journal Coal Geology, 61, 241–258. doi:10.1016/j.coal.2004.09.002 DOI: https://doi.org/10.1016/j.coal.2004.09.002
  37. Dai, S., Ren, D., Tang, Y., Yue, M., & Hao, L. (2005). Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. International Journal of Coal Geology, 61 (1–2), 119–137. doi:10.1016/j.coal.2004.07.003 DOI: https://doi.org/10.1016/j.coal.2004.07.003
  38. Dai, S., Wang, X., Seredin, V. V., Hower, J. C., Ward, C. R., O’Keefe, J. M. K., Huang, W., Li, T., Li, X., Liu, H., Xue, W., & Zhao, L. (2012). Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. International Journal of Coal Geology, 90–91, 72–99. doi:10.1016/j.coal.2011.10.012 DOI: https://doi.org/10.1016/j.coal.2011.10.012
  39. Diehl, S. F., Goldhaber, M. B., Koenig, A. E., Lowers, H. A., & Ruppert, L. F. (2012). Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals : Evidence for multiple episodes of pyrite formation. International Journal of Coal Geology, 94, 238–249. doi:10.1016/j.coal.2012.01.015 DOI: https://doi.org/10.1016/j.coal.2012.01.015
  40. E.U.S. Environmental Protection Agency [EPA]. (2015). Policy assessment for the review of the lead national ambient air quality standards. Recuperado de: https://nepis.epa.gov/Exe/ZyNET.exe/P100ITJD.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2011+Thru+2015&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C11thru15%5CTxt%5C00000010%5CP100ITJD.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
  41. Fu, B., Liu, G., Liu, Y., Cheng, S., Qi, C., & Sun, R. (2016). Coal quality characterization and its relationship with geological process of the Early Permian Huainan coal deposits, southern North China. Journal of Geochemical Exploration, 166, 33–44. doi:10.1016/j.gexplo.2016.04.002 DOI: https://doi.org/10.1016/j.gexplo.2016.04.002
  42. Jongwana, L.T., & Crouch, A.M. (2012). Mercury speciation in South African coal. Fuel, 94, 234–239. doi:10.1016/j.fuel.2011.09.033 DOI: https://doi.org/10.1016/j.fuel.2011.09.033
  43. Ketris, M. P., & Yudovich, Y. E. (2009). Estimations of clarkes for carbonaceous biolithes : World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78 (2), 135–148. doi:10.1016/j.coal.2009.01.002 DOI: https://doi.org/10.1016/j.coal.2009.01.002
  44. Kostova, I., Vassileva, C., Dai, C., Hower, J.C., & Apostolova, D. (2013). Influence of surface area properties on mercury capture behaviour of coal fly ashes from some Bulgarian power plants. International Journal of Coal Geology, 116–117, 227–235. doi:10.1016/j.coal.2013.03.008 DOI: https://doi.org/10.1016/j.coal.2013.03.008
  45. Lachas, H., Richaud, R., Herod, A.A., Dugwell, D.R. Kandiyoti, R., & Jarvis, K. E. (1999). Determination of 17 trace elements in coal and ash reference materials by ICP-MS applied to milligram sample sizes. Analyst, 124 (2), 177–184. doi: 10.1039/A807849A DOI: https://doi.org/10.1039/a807849a
  46. Laus, R., Geremias, R., Vasconcelos, H. L., Laranjeira, M. C. M., & Fávere, V. T. (2007). Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres. Journal Hazardous Materials, 149 (2), 471–474. doi:10.1016/j.jhazmat.2007.04.012 DOI: https://doi.org/10.1016/j.jhazmat.2007.04.012
  47. Li, J., Zhuang, X., & Querol, X. (2011). Trace element affinities in two high-Ge coals from China. Fuel, 90 (1), 240–247. doi:10.1016/j.fuel.2010.08.011 DOI: https://doi.org/10.1016/j.fuel.2010.08.011
  48. Li, J., Zhuang, X., Querol, X., Font, O., Izquierdo, M. & Wang, M. (2014). New data on mineralogy and geochemistry of high-Ge coals in the Yimin coalfield, Inner Mongolia, China. International Journal of Coal Geology, 125, 10–21. doi:10.1016/j.coal.2014.01.006 DOI: https://doi.org/10.1016/j.coal.2014.01.006
  49. Liu, G., Zheng, L., Zhang, Y., Qi, C., Chen, Y. & Peng, Z. (2007). Distribution and mode of occurrence of As, Hg and Se and Sulfur in coal Seam 3 of the Shanxi Formation,Yanzhou Coalfield, China. International Journal of Coal Geology, 71 (2–3), 371–385. doi:10.1016/j.coal.2006.12.005 DOI: https://doi.org/10.1016/j.coal.2006.12.005
  50. Liu, J., Yang, Z., Yan, X., Ji, D., Yang, Y., & Hu, L. (2015). Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals. Fuel, 156, 190–197. doi:10.1016/j.fuel.2015.04.034 DOI: https://doi.org/10.1016/j.fuel.2015.04.034
  51. Martínez-Bernal, M. S. (2013). Determinación de la productividad y competitividad de la pequeña minería del distrito minero del norte de Boyacá. Revista de Investigación, Desarrollo e Innovación, 3 (2), 72-86. doi: 10.19053/20278306.2168 DOI: https://doi.org/10.19053/20278306.2168
  52. Martínez-Ovalle, S., Reyes-Caballero, F., & González-Puin, L.X. (2013). Protección radiológica a trabajadores y público en instalaciones que operan radioisótopos industriales. Revista de Investigación, Desarrollo e Innovación, 3 (2), 120-124. doi: 10.19053/20278306.2166 DOI: https://doi.org/10.19053/20278306.2166
  53. Morales, W., & Carmona, I. (2007). Estudio de algunos elementos traza en carbones de la cuenca Cesar – Ranchería, Colombia. Boletín ciencias la tierra, 20, 75–87. Recuperado de http://www.revistas.unal.edu.co/index.php/rbct/article/view/728
  54. Ohki, A., Taira, M., Hirakawa, S., Haraguchi, K., Kanechika, F., Nakajima, T., & Takanashi, H. (2014). Determination of mercury in various coals from different countries by heat-vaporization atomic absorption spectrometry: Influence of particle size distribution of coal. Microchemical Journal, 114, 119–124. doi:10.1016/j.microc.2013.12.012 DOI: https://doi.org/10.1016/j.microc.2013.12.012
  55. Saha, D., Chakravarty, S., Shome, D., Basariya, M. R., Kumari, A., Kumar, A., Chatterjee, D., Adhikari, J. & Chatterjee, D. (2016). Distribution and affinity of trace elements in Samaleswari coal, Eastern India. Fuel, 181, 376–388. doi:10.1016/j.fuel.2016.04.134 DOI: https://doi.org/10.1016/j.fuel.2016.04.134
  56. Seredin, V. V., & Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94, 67–93. doi:10.1016/j.coal.2011.11.001 DOI: https://doi.org/10.1016/j.coal.2011.11.001
  57. Seredin, V.V. (2012). From coal science to metal production and environmental protection : A new story of success. International Journal of Coal Geology, 90–91, 1–3. doi:10.1016/j.coal.2011.11.006 DOI: https://doi.org/10.1016/j.coal.2011.11.006
  58. Seredin, V.V., & Finkelman, R.B. (2008). Metalliferous coals: A review of the main genetic and geochemical types. International Journal of Coal Geology, 76 (4), 253–289. doi:10.1016/j.coal.2008.07.016 DOI: https://doi.org/10.1016/j.coal.2008.07.016
  59. Seredin, V.V., Dai, S., Sun, Y., & Chekryzhov, I.Y. (2013). Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Applied Geochemistry, 31, 1–11. doi:10.1016/j.apgeochem.2013.01.009 DOI: https://doi.org/10.1016/j.apgeochem.2013.01.009
  60. Stanislav, C. G. V., Vassilev, V., & Eskenazy, G.M. (2001). Behaviour of elements and minerals during preparation and combustion of the Pernik coal, Bulgaria. Fuel Processing Technology, 72 (2), 103-129. doi:10.1016/S0378-3820(01)00186-2 DOI: https://doi.org/10.1016/S0378-3820(01)00186-2
  61. Unidad de Planeación Minero-Energética [UPME]. (2005). La cadena del carbón. El carbón colombiano fuente de energía para el mundo. Recuperado de: http://www.upme.gov.co/Docs/Cadena_carbon.pdf
  62. Yoshiie, Y., Taya, Y., Ichiyanagi, T., Ueki, Y, & Naruse, I. (2013). Emissions of particles and trace elements from coal gasification. Fuel, 108, 67–72. doi:10.1016/j.fuel.2011.06.011 DOI: https://doi.org/10.1016/j.fuel.2011.06.011
  63. Yuepeng, P., Tian, S., Xingru, L., Sun, Y., Li, Y., Wentworth, G. R., & Wang, Y. (2015). Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions. Science of Total Environment, 537, 9–22. doi: 10.1016/j.scitotenv.2015.07.060 DOI: https://doi.org/10.1016/j.scitotenv.2015.07.060
  64. Zhang, J., Ren, D., Zhu, Y., & Chou. (2004). Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in southwestern Guizhou , China. International Journal of Coal Geology, 57, 49–61. doi:10.1016/j.coal.2003.07.001 DOI: https://doi.org/10.1016/j.coal.2003.07.001

Downloads

Download data is not yet available.

Similar Articles

<< < 1 2 3 4 

You may also start an advanced similarity search for this article.