Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Presencia de elementos contaminantes como Cd, As, Pb, Se y Hg en carbones de la zona Cundiboyacense, Colombia

Resumen

Carbones de la zona cundiboyacence fueron estudiados, con el fin de determinar la presencia y cuantificar los contenidos de elementos contaminantes como: cadmio (Cd), arsénico (As), plomo (Pb), selenio (Se) y mercurio (Hg), estos elementos son comparados con los índices de Clarke para carbones del mismo rango. Las muestras de carbón fueron tomadas de frentes de explotación activa y son analizadas mediante análisis próximos, petrográficos y por espectrometría de masas con plasma acoplado inductivamente (ICP-MS). Los resultados revelan que las muestras analizadas presentan contenidos promedio de metales como Pb (15,5 mg•kg-1), Se (16,5 mg•kg-1), Cd (0,55 mg•kg-1) y As (16,05 mg•kg-1) por encima del promedio mundial para carbones del mismo rango y sus concentraciones son mayores a los carbones de la zona norte carbonífera de Colombia, el contenido de Hg es bajo (< 0,08 mg•kg-1). El contenido de estos elementos genera preocupación ambiental ya que de acuerdo a la Agencia de Protección Ambiental de los Estados Unidos (EPA), el límite máximo permitido para el Se, Pb y Cd es de 0.05 mg•kg-1(ppm). Se sugiere realizar estudios específicos, que permitan la recuperación previa y/o utilización.

Palabras clave

elementos contaminantes, características petrográficas, análisis próximos, carbones, Cundinamarca, Boyacá.

PDF

Biografía del autor/a

Olga Patricia Gómez-Rojas

Ninguna


Citas

  1. Brownfield, M.E., Affolter, R.H., Cathcart, J.D., Johnson, S.Y., Brownfield, I.K., & Rice, C.A. (2005). Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No. 1 mine, King County, Washington, USA. International Journal Coal Geology, 63 (3–4), 247–275. doi:10.1016/j.coal.2005.03.021
  2. Chen, Z., Liu, Y., Qin, P., Zhang, B., Lester, L., Chen, C., & Guo, Y. (2015). Environmental externality of coal use in China : Welfare effect and tax regulation. Applied Energy, 156, 16–31. doi:10.1016/j.apenergy.2015.06.066
  3. Cutruneo, C. M. N. L., Oliveira, M. L. S., Ward, M. L. S., Hower, J. C., De Brum, I. A. S., Sampaio, C. H., Kautzmann, R. M., Taffarel, S. R., Teixeira, E. C., & Silva, L. F. O. (2014). A mineralogical and geochemical study of three Brazilian coal cleaning rejects : Demonstration of electron beam applications. International Journal of Coal Geology, 130, 33–52. doi:10.1016/j.coal.2014.05.009
  4. Dai, S., Chou, C., Yue, M., Luo, K., & Ren, D. (2005). Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield , Guizhou , China : influence from siliceous and iron-rich calcic hydrothermal fluids. International Journal Coal Geology, 61, 241–258. doi:10.1016/j.coal.2004.09.002
  5. Dai, S., Ren, D., Tang, Y., Yue, M., & Hao, L. (2005). Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. International Journal of Coal Geology, 61 (1–2), 119–137. doi:10.1016/j.coal.2004.07.003
  6. Dai, S., Wang, X., Seredin, V. V., Hower, J. C., Ward, C. R., O’Keefe, J. M. K., Huang, W., Li, T., Li, X., Liu, H., Xue, W., & Zhao, L. (2012). Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. International Journal of Coal Geology, 90–91, 72–99. doi:10.1016/j.coal.2011.10.012
  7. Diehl, S. F., Goldhaber, M. B., Koenig, A. E., Lowers, H. A., & Ruppert, L. F. (2012). Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals : Evidence for multiple episodes of pyrite formation. International Journal of Coal Geology, 94, 238–249. doi:10.1016/j.coal.2012.01.015
  8. E.U.S. Environmental Protection Agency [EPA]. (2015). Policy assessment for the review of the lead national ambient air quality standards. Recuperado de: https://nepis.epa.gov/Exe/ZyNET.exe/P100ITJD.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2011+Thru+2015&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C11thru15%5CTxt%5C00000010%5CP100ITJD.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
  9. Fu, B., Liu, G., Liu, Y., Cheng, S., Qi, C., & Sun, R. (2016). Coal quality characterization and its relationship with geological process of the Early Permian Huainan coal deposits, southern North China. Journal of Geochemical Exploration, 166, 33–44. doi:10.1016/j.gexplo.2016.04.002
  10. Jongwana, L.T., & Crouch, A.M. (2012). Mercury speciation in South African coal. Fuel, 94, 234–239. doi:10.1016/j.fuel.2011.09.033
  11. Ketris, M. P., & Yudovich, Y. E. (2009). Estimations of clarkes for carbonaceous biolithes : World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78 (2), 135–148. doi:10.1016/j.coal.2009.01.002
  12. Kostova, I., Vassileva, C., Dai, C., Hower, J.C., & Apostolova, D. (2013). Influence of surface area properties on mercury capture behaviour of coal fly ashes from some Bulgarian power plants. International Journal of Coal Geology, 116–117, 227–235. doi:10.1016/j.coal.2013.03.008
  13. Lachas, H., Richaud, R., Herod, A.A., Dugwell, D.R. Kandiyoti, R., & Jarvis, K. E. (1999). Determination of 17 trace elements in coal and ash reference materials by ICP-MS applied to milligram sample sizes. Analyst, 124 (2), 177–184. doi: 10.1039/A807849A
  14. Laus, R., Geremias, R., Vasconcelos, H. L., Laranjeira, M. C. M., & Fávere, V. T. (2007). Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres. Journal Hazardous Materials, 149 (2), 471–474. doi:10.1016/j.jhazmat.2007.04.012
  15. Li, J., Zhuang, X., & Querol, X. (2011). Trace element affinities in two high-Ge coals from China. Fuel, 90 (1), 240–247. doi:10.1016/j.fuel.2010.08.011
  16. Li, J., Zhuang, X., Querol, X., Font, O., Izquierdo, M. & Wang, M. (2014). New data on mineralogy and geochemistry of high-Ge coals in the Yimin coalfield, Inner Mongolia, China. International Journal of Coal Geology, 125, 10–21. doi:10.1016/j.coal.2014.01.006
  17. Liu, G., Zheng, L., Zhang, Y., Qi, C., Chen, Y. & Peng, Z. (2007). Distribution and mode of occurrence of As, Hg and Se and Sulfur in coal Seam 3 of the Shanxi Formation,Yanzhou Coalfield, China. International Journal of Coal Geology, 71 (2–3), 371–385. doi:10.1016/j.coal.2006.12.005
  18. Liu, J., Yang, Z., Yan, X., Ji, D., Yang, Y., & Hu, L. (2015). Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals. Fuel, 156, 190–197. doi:10.1016/j.fuel.2015.04.034
  19. Martínez-Bernal, M. S. (2013). Determinación de la productividad y competitividad de la pequeña minería del distrito minero del norte de Boyacá. Revista de Investigación, Desarrollo e Innovación, 3 (2), 72-86. doi: 10.19053/20278306.2168
  20. Martínez-Ovalle, S., Reyes-Caballero, F., & González-Puin, L.X. (2013). Protección radiológica a trabajadores y público en instalaciones que operan radioisótopos industriales. Revista de Investigación, Desarrollo e Innovación, 3 (2), 120-124. doi: 10.19053/20278306.2166
  21. Morales, W., & Carmona, I. (2007). Estudio de algunos elementos traza en carbones de la cuenca Cesar – Ranchería, Colombia. Boletín ciencias la tierra, 20, 75–87. Recuperado de http://www.revistas.unal.edu.co/index.php/rbct/article/view/728
  22. Ohki, A., Taira, M., Hirakawa, S., Haraguchi, K., Kanechika, F., Nakajima, T., & Takanashi, H. (2014). Determination of mercury in various coals from different countries by heat-vaporization atomic absorption spectrometry: Influence of particle size distribution of coal. Microchemical Journal, 114, 119–124. doi:10.1016/j.microc.2013.12.012
  23. Saha, D., Chakravarty, S., Shome, D., Basariya, M. R., Kumari, A., Kumar, A., Chatterjee, D., Adhikari, J. & Chatterjee, D. (2016). Distribution and affinity of trace elements in Samaleswari coal, Eastern India. Fuel, 181, 376–388. doi:10.1016/j.fuel.2016.04.134
  24. Seredin, V. V., & Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94, 67–93. doi:10.1016/j.coal.2011.11.001
  25. Seredin, V.V. (2012). From coal science to metal production and environmental protection : A new story of success. International Journal of Coal Geology, 90–91, 1–3. doi:10.1016/j.coal.2011.11.006
  26. Seredin, V.V., & Finkelman, R.B. (2008). Metalliferous coals: A review of the main genetic and geochemical types. International Journal of Coal Geology, 76 (4), 253–289. doi:10.1016/j.coal.2008.07.016
  27. Seredin, V.V., Dai, S., Sun, Y., & Chekryzhov, I.Y. (2013). Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Applied Geochemistry, 31, 1–11. doi:10.1016/j.apgeochem.2013.01.009
  28. Stanislav, C. G. V., Vassilev, V., & Eskenazy, G.M. (2001). Behaviour of elements and minerals during preparation and combustion of the Pernik coal, Bulgaria. Fuel Processing Technology, 72 (2), 103-129. doi:10.1016/S0378-3820(01)00186-2
  29. Unidad de Planeación Minero-Energética [UPME]. (2005). La cadena del carbón. El carbón colombiano fuente de energía para el mundo. Recuperado de: http://www.upme.gov.co/Docs/Cadena_carbon.pdf
  30. Yoshiie, Y., Taya, Y., Ichiyanagi, T., Ueki, Y, & Naruse, I. (2013). Emissions of particles and trace elements from coal gasification. Fuel, 108, 67–72. doi:10.1016/j.fuel.2011.06.011
  31. Yuepeng, P., Tian, S., Xingru, L., Sun, Y., Li, Y., Wentworth, G. R., & Wang, Y. (2015). Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions. Science of Total Environment, 537, 9–22. doi: 10.1016/j.scitotenv.2015.07.060
  32. Zhang, J., Ren, D., Zhu, Y., & Chou. (2004). Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in southwestern Guizhou , China. International Journal of Coal Geology, 57, 49–61. doi:10.1016/j.coal.2003.07.001
  33. Brownfield, M.E., Affolter, R.H., Cathcart, J.D., Johnson, S.Y., Brownfield, I.K., & Rice, C.A. (2005). Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No. 1 mine, King County, Washington, USA. International Journal Coal Geology, 63 (3–4), 247–275. doi:10.1016/j.coal.2005.03.021 DOI: https://doi.org/10.1016/j.coal.2005.03.021
  34. Chen, Z., Liu, Y., Qin, P., Zhang, B., Lester, L., Chen, C., & Guo, Y. (2015). Environmental externality of coal use in China : Welfare effect and tax regulation. Applied Energy, 156, 16–31. doi:10.1016/j.apenergy.2015.06.066 DOI: https://doi.org/10.1016/j.apenergy.2015.06.066
  35. Cutruneo, C. M. N. L., Oliveira, M. L. S., Ward, M. L. S., Hower, J. C., De Brum, I. A. S., Sampaio, C. H., Kautzmann, R. M., Taffarel, S. R., Teixeira, E. C., & Silva, L. F. O. (2014). A mineralogical and geochemical study of three Brazilian coal cleaning rejects : Demonstration of electron beam applications. International Journal of Coal Geology, 130, 33–52. doi:10.1016/j.coal.2014.05.009 DOI: https://doi.org/10.1016/j.coal.2014.05.009
  36. Dai, S., Chou, C., Yue, M., Luo, K., & Ren, D. (2005). Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield , Guizhou , China : influence from siliceous and iron-rich calcic hydrothermal fluids. International Journal Coal Geology, 61, 241–258. doi:10.1016/j.coal.2004.09.002 DOI: https://doi.org/10.1016/j.coal.2004.09.002
  37. Dai, S., Ren, D., Tang, Y., Yue, M., & Hao, L. (2005). Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. International Journal of Coal Geology, 61 (1–2), 119–137. doi:10.1016/j.coal.2004.07.003 DOI: https://doi.org/10.1016/j.coal.2004.07.003
  38. Dai, S., Wang, X., Seredin, V. V., Hower, J. C., Ward, C. R., O’Keefe, J. M. K., Huang, W., Li, T., Li, X., Liu, H., Xue, W., & Zhao, L. (2012). Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. International Journal of Coal Geology, 90–91, 72–99. doi:10.1016/j.coal.2011.10.012 DOI: https://doi.org/10.1016/j.coal.2011.10.012
  39. Diehl, S. F., Goldhaber, M. B., Koenig, A. E., Lowers, H. A., & Ruppert, L. F. (2012). Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals : Evidence for multiple episodes of pyrite formation. International Journal of Coal Geology, 94, 238–249. doi:10.1016/j.coal.2012.01.015 DOI: https://doi.org/10.1016/j.coal.2012.01.015
  40. E.U.S. Environmental Protection Agency [EPA]. (2015). Policy assessment for the review of the lead national ambient air quality standards. Recuperado de: https://nepis.epa.gov/Exe/ZyNET.exe/P100ITJD.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2011+Thru+2015&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C11thru15%5CTxt%5C00000010%5CP100ITJD.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
  41. Fu, B., Liu, G., Liu, Y., Cheng, S., Qi, C., & Sun, R. (2016). Coal quality characterization and its relationship with geological process of the Early Permian Huainan coal deposits, southern North China. Journal of Geochemical Exploration, 166, 33–44. doi:10.1016/j.gexplo.2016.04.002 DOI: https://doi.org/10.1016/j.gexplo.2016.04.002
  42. Jongwana, L.T., & Crouch, A.M. (2012). Mercury speciation in South African coal. Fuel, 94, 234–239. doi:10.1016/j.fuel.2011.09.033 DOI: https://doi.org/10.1016/j.fuel.2011.09.033
  43. Ketris, M. P., & Yudovich, Y. E. (2009). Estimations of clarkes for carbonaceous biolithes : World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78 (2), 135–148. doi:10.1016/j.coal.2009.01.002 DOI: https://doi.org/10.1016/j.coal.2009.01.002
  44. Kostova, I., Vassileva, C., Dai, C., Hower, J.C., & Apostolova, D. (2013). Influence of surface area properties on mercury capture behaviour of coal fly ashes from some Bulgarian power plants. International Journal of Coal Geology, 116–117, 227–235. doi:10.1016/j.coal.2013.03.008 DOI: https://doi.org/10.1016/j.coal.2013.03.008
  45. Lachas, H., Richaud, R., Herod, A.A., Dugwell, D.R. Kandiyoti, R., & Jarvis, K. E. (1999). Determination of 17 trace elements in coal and ash reference materials by ICP-MS applied to milligram sample sizes. Analyst, 124 (2), 177–184. doi: 10.1039/A807849A DOI: https://doi.org/10.1039/a807849a
  46. Laus, R., Geremias, R., Vasconcelos, H. L., Laranjeira, M. C. M., & Fávere, V. T. (2007). Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres. Journal Hazardous Materials, 149 (2), 471–474. doi:10.1016/j.jhazmat.2007.04.012 DOI: https://doi.org/10.1016/j.jhazmat.2007.04.012
  47. Li, J., Zhuang, X., & Querol, X. (2011). Trace element affinities in two high-Ge coals from China. Fuel, 90 (1), 240–247. doi:10.1016/j.fuel.2010.08.011 DOI: https://doi.org/10.1016/j.fuel.2010.08.011
  48. Li, J., Zhuang, X., Querol, X., Font, O., Izquierdo, M. & Wang, M. (2014). New data on mineralogy and geochemistry of high-Ge coals in the Yimin coalfield, Inner Mongolia, China. International Journal of Coal Geology, 125, 10–21. doi:10.1016/j.coal.2014.01.006 DOI: https://doi.org/10.1016/j.coal.2014.01.006
  49. Liu, G., Zheng, L., Zhang, Y., Qi, C., Chen, Y. & Peng, Z. (2007). Distribution and mode of occurrence of As, Hg and Se and Sulfur in coal Seam 3 of the Shanxi Formation,Yanzhou Coalfield, China. International Journal of Coal Geology, 71 (2–3), 371–385. doi:10.1016/j.coal.2006.12.005 DOI: https://doi.org/10.1016/j.coal.2006.12.005
  50. Liu, J., Yang, Z., Yan, X., Ji, D., Yang, Y., & Hu, L. (2015). Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals. Fuel, 156, 190–197. doi:10.1016/j.fuel.2015.04.034 DOI: https://doi.org/10.1016/j.fuel.2015.04.034
  51. Martínez-Bernal, M. S. (2013). Determinación de la productividad y competitividad de la pequeña minería del distrito minero del norte de Boyacá. Revista de Investigación, Desarrollo e Innovación, 3 (2), 72-86. doi: 10.19053/20278306.2168 DOI: https://doi.org/10.19053/20278306.2168
  52. Martínez-Ovalle, S., Reyes-Caballero, F., & González-Puin, L.X. (2013). Protección radiológica a trabajadores y público en instalaciones que operan radioisótopos industriales. Revista de Investigación, Desarrollo e Innovación, 3 (2), 120-124. doi: 10.19053/20278306.2166 DOI: https://doi.org/10.19053/20278306.2166
  53. Morales, W., & Carmona, I. (2007). Estudio de algunos elementos traza en carbones de la cuenca Cesar – Ranchería, Colombia. Boletín ciencias la tierra, 20, 75–87. Recuperado de http://www.revistas.unal.edu.co/index.php/rbct/article/view/728
  54. Ohki, A., Taira, M., Hirakawa, S., Haraguchi, K., Kanechika, F., Nakajima, T., & Takanashi, H. (2014). Determination of mercury in various coals from different countries by heat-vaporization atomic absorption spectrometry: Influence of particle size distribution of coal. Microchemical Journal, 114, 119–124. doi:10.1016/j.microc.2013.12.012 DOI: https://doi.org/10.1016/j.microc.2013.12.012
  55. Saha, D., Chakravarty, S., Shome, D., Basariya, M. R., Kumari, A., Kumar, A., Chatterjee, D., Adhikari, J. & Chatterjee, D. (2016). Distribution and affinity of trace elements in Samaleswari coal, Eastern India. Fuel, 181, 376–388. doi:10.1016/j.fuel.2016.04.134 DOI: https://doi.org/10.1016/j.fuel.2016.04.134
  56. Seredin, V. V., & Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94, 67–93. doi:10.1016/j.coal.2011.11.001 DOI: https://doi.org/10.1016/j.coal.2011.11.001
  57. Seredin, V.V. (2012). From coal science to metal production and environmental protection : A new story of success. International Journal of Coal Geology, 90–91, 1–3. doi:10.1016/j.coal.2011.11.006 DOI: https://doi.org/10.1016/j.coal.2011.11.006
  58. Seredin, V.V., & Finkelman, R.B. (2008). Metalliferous coals: A review of the main genetic and geochemical types. International Journal of Coal Geology, 76 (4), 253–289. doi:10.1016/j.coal.2008.07.016 DOI: https://doi.org/10.1016/j.coal.2008.07.016
  59. Seredin, V.V., Dai, S., Sun, Y., & Chekryzhov, I.Y. (2013). Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Applied Geochemistry, 31, 1–11. doi:10.1016/j.apgeochem.2013.01.009 DOI: https://doi.org/10.1016/j.apgeochem.2013.01.009
  60. Stanislav, C. G. V., Vassilev, V., & Eskenazy, G.M. (2001). Behaviour of elements and minerals during preparation and combustion of the Pernik coal, Bulgaria. Fuel Processing Technology, 72 (2), 103-129. doi:10.1016/S0378-3820(01)00186-2 DOI: https://doi.org/10.1016/S0378-3820(01)00186-2
  61. Unidad de Planeación Minero-Energética [UPME]. (2005). La cadena del carbón. El carbón colombiano fuente de energía para el mundo. Recuperado de: http://www.upme.gov.co/Docs/Cadena_carbon.pdf
  62. Yoshiie, Y., Taya, Y., Ichiyanagi, T., Ueki, Y, & Naruse, I. (2013). Emissions of particles and trace elements from coal gasification. Fuel, 108, 67–72. doi:10.1016/j.fuel.2011.06.011 DOI: https://doi.org/10.1016/j.fuel.2011.06.011
  63. Yuepeng, P., Tian, S., Xingru, L., Sun, Y., Li, Y., Wentworth, G. R., & Wang, Y. (2015). Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions. Science of Total Environment, 537, 9–22. doi: 10.1016/j.scitotenv.2015.07.060 DOI: https://doi.org/10.1016/j.scitotenv.2015.07.060
  64. Zhang, J., Ren, D., Zhu, Y., & Chou. (2004). Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in southwestern Guizhou , China. International Journal of Coal Geology, 57, 49–61. doi:10.1016/j.coal.2003.07.001 DOI: https://doi.org/10.1016/j.coal.2003.07.001

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 1 2 3 4 5 > >> 

También puede {advancedSearchLink} para este artículo.