Skip to main navigation menu Skip to main content Skip to site footer

Spatial Data Mining in Agriculture in Latin America - A Conceptual Approach

Abstract

Due to the increase in the use of GIS, it is necessary to know complementary techniques such as spatial data mining. This paper is a review of some of the existing techniques, as well as which of these provide greater benefits, revealing trends in their application in agriculture. Additionally, because in this area several variables are manipulated, tools are presented to facilitate the making decision process, by providing the result of evaluating the available data.

Keywords

agriculture, geographical information systems, spatial data mining

PDF (Español) XML (Español)

References

  1. Aguirre Valencia, J., Daza Santacoloma, G., Acosta, C. D., & Castellanos Domínguez, G. (2010). Comparación de métodos de reducción de dimensión basados en análisis por localidades. Revista TecnoLógicas, (25), 131-150. https://doi.org/10.22430/22565337.127
  2. Alfaro, E. (2015a). Algoritmos genéticos. Disponible en http://eddyalfaro.galeon.com/geneticos.html
  3. Alfaro, E. (2015b). El proceso de KDD-Técnicas de minería de datos y principales algoritmos. Disponible en http://exa.unne.edu.ar/depar/areas/informatica/dad/DAD/Presentaciones/Mineria_de_Datos.pdf
  4. Aljure, D. C., & Agudelo J. G. (2011). Minería de datos espaciales. Revista de Avances en Sistemas e Informática, 8 (3), 71-77
  5. Aluja, T. (2001). La minería de datos entre la estadística y la inteligencia artificial. QÜESTIIÓ, 25 (3), 479-498
  6. Cao, L., San, X., Zhao, Y., & Chen, G. (2013). The Application of the Spatio-temporal Data Mining Algorithm in Maize Yield Prediction. Math. Comput. Model, 58 (3-4), 507-513. https://doi.org/10.1016/j.mcm.2011.10.073
  7. Dueñas-Reyes, M. X. (2009). Searching for True Information with Spatial Data Mining. Ingeniería y Universidad, 13 (1), 137-156
  8. González Polanco, L., & Pérez Betancourt, Y. G. (2013). La minería de datos espaciales y su aplicación en los estudios de salud y epidemiología. Revista Cubana de Información en Ciencias de la Salud, 24(4),482-489
  9. Herrera-Parra, C. A. (2006). Minería de datos espacial. Disponible en http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.130.5194&rep=rep1&type=pdf
  10. Mennis, J., & Guo, D. (2009). Spatial Data Mining and Geographic Knowledge Discovery-An Introduction. Comput. Environ. Urban Syst., 33 (6), 403-408. https://doi.org/10.1016/j.compenvurbsys.2009.11.001
  11. Osorio Zuluaga, G. A. (2009). Análisis de características del ambiente creativo en empresas de Manizales con técnicas KDD. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales, Manizales, Colombia.
  12. Peeters, A., Zude, M., Käthner, J., Ünlü, M., Kanber, R., Hetzroni, A., Gebbers, R., & Ben-Gal, A. (2015). Getis-Ord’s hot- and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data. Comput. Electron. Agric., 111, 140-150. https://doi.org/10.1016/j.compag.2014.12.011
  13. Rojas-Montes, M., Pino-Correa, F., & Martínez, J. (2015). Proceso de pruebas para pequeñas organizaciones desarrolladoras de software. Revista Facultad de Ingeniería, 24(39), 55-70. https://doi.org/10.19053/01211129.3551
  14. Shekhar, S., & Chawla, S. (2003). Introduction to spatial data mining. En: Spatial Databases: A Tour, Prentice Hall
  15. Shekhar, S., Zhang, P., Huang, Y., & Vatsavai, R. R. (2008) Trends in Spatial Data Mining. En Kargupta, H. y Joshi, A. (Eds.). Data mining: next generation challenges and future directions. AAAI/MIT Press, 357-380
  16. Sivakumar, K., & Prakaash, A. S. (2019). An Empirical Research on Spatial Data Mining. International Journal of Innovative Technology and Exploring Engineering, 8 (12S2), 797-800. https://doi.org/10.35940/ijitee.l1136.10812s219
  17. Sumathi, N., & Geetha, R. (2008). Spatial Data Mining-Techniques Trends and Its Applications. J. Comput. Appl., 1 (4), 28-30
  18. Sundaram, V. M. Thnagavelu, A., & Paneer, P. (2012). Discovering Co-location Patterns from Spatial Domain using a Delaunay Approach. Procedia Eng., 38, 2832-2845. https://doi.org/10.1016/j.proeng.2012.06.332
  19. Tripathy, A. K., Adinarayana, J., & Sudharsan, D. (2009). Geospatial data mining for Agriculture Pest Management – A Framework. En: 17th International Conference on Geoinformatics, Virginia, United States of America. https://doi.org/10.1109/geoinformatics.2009.5293296
  20. Wang, L., Zhou, L., Lu, J., & Yip, J. (2009). An order-clique-based approach for mining maximal co-locations. Inf. Sci., 179 (19), 3370-3382. https://doi.org/10.1016/j.ins.2009.05.023

Downloads

Download data is not yet available.

Most read articles by the same author(s)