Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Sistemas dinámicos con retardos bajo la metodología del predictor de smith

Resumen

Esta contribución presenta una solución al problema del tiempo muerto que se conoce como "Predictor Smith". Esta solución nos permite utilizar técnicas ya conocidas para el diseño de controladores para sistemas sin retardo y adaptarlos a sistemas con retardo. “Como objetivo de diseño se pretende lograr que la respuesta del sistema con retardo, tenga las mismas características dinámicas del sistema sin retardo, por ejemplo, que tenga la misma respuesta a la entrada escalón, pero desplazada en el tiempo el valor de el retraso.

Palabras clave

Sistema de control, Compesación de demora, Predictor Smith.

PDF

Citas

  1. K. J. Astrom, C. C. Hang, and B. C. Lim, “A new Smith predictor for controlling a process with an integrator and long dead-time”, IEEE transactions on Automatic Control, vol. 39, no. 2, pp. 343-345, 1994. DOI: https://doi.org/10.1109/9.272329
  2. T. Liu, Y. Z. Cai, D. Y. Gu, and W. D. Zhang, “New modified Smith predictor scheme for integrating and unstable processes with time de- lay”, IEE Proceedings-Control Theory and Applications, vol. 152, no. 2, pp. 238-246, 2005. DOI: https://doi.org/10.1049/ip-cta:20041232
  3. D. L. Laughlin, D. E. Rivera, and M. Morari, “Smith predictor design for robust perfor- mance”, International Journal of Control, vol. 46, no. 2, pp. 477-504, 1987. DOI: https://doi.org/10.1080/00207178708933912
  4. W. D. Zhang and Y. X. Sun, “Modified Smith predictor for controlling integrator/time delay processes”, Industrial Engineering Chemistry Research, vol. 35, no. 8, pp. 2769-2772, 1996. DOI: https://doi.org/10.1021/ie950664v
  5. W. D. Zhang, Y. X. Sun, and X. Xu, “Two degree-of-freedom Smith predictor for pro- cesses with time delay”, Automatica, vol. 34, no. 10, pp. 1279-1282, 1998. DOI: https://doi.org/10.1016/S0005-1098(98)00075-2
  6. T. Singh and S. R. Vadali, “Robust time-delay control”, Journal of dynamic systems, measure- ment, and control, vol. 115, no. 2A, pp. 303- 306, 1993. DOI: https://doi.org/10.1115/1.2899035
  7. R. C. Miall, D. J. Weir, D. M. Wolpert, and J. F. Stein, “Is the cerebellum a smith predictor?”, Journal of motor behavior, vol. 125, no. 3, pp. 203-216, 1993. DOI: https://doi.org/10.1080/00222895.1993.9942050
  8. H. Arioui, S. Mammar, and T. Hamel, “A smith- prediction based haptic feedback controller for time delayed virtual environments systems”, In Proceedings of the 2002 American Control Conference, vol. 5, IEEE Cat. No. CH37301, pp. 4303-4308, May 2002. DOI: https://doi.org/10.1109/ACC.2002.1024609
  9. M. R. Matausek, and A. D. Micic, “A modified Smith predictor for controlling a process with an integrator and long dead-time”, IEEE trans- actions on automatic control, vol. 41, no. 8, pp. 1199-1203, 1996. DOI: https://doi.org/10.1109/9.533684
  10. A. Bahill, “A simple adaptive smith-predictor for controlling time-delay systems: A tutorial”, IEEE Control systems magazine, vol. 3, no. 2, pp. 16-22, 1983. DOI: https://doi.org/10.1109/MCS.1983.1104748
  11. N. Abe and K. Yamanaka, “Smith predictor control and internal model control-a tutorial”, In SICE 2003 Annual Conference, vol. 2, IEEE Cat. No. 03TH8734, pp. 1383-1387, August 2003.
  12. S. Majhi and D. P. Atherton, ‘controller param- eters for a new Smith predictor using autotun- ing”, Automatica, vol. 36, no. 11, pp. 1651- 1658, 2000. DOI: https://doi.org/10.1016/S0005-1098(00)00085-6
  13. TheSmithpredictor,themodifiedSmithpredic- tor, and the finite spectrum assignment: A com- parative studyâ, Tamas G. Molnar, ... Tamas Insperger, in Stability, Control and Application of Time-delay Systems, 2019.
  14. “¿Should we forget the Smith Predictor? “, Grimholt Sigurd Skogestad, I FAC-Papers On- Line , vol. 51, no. 4, 2018, pp. 769-774. DOI: https://doi.org/10.1016/j.ifacol.2018.06.203
  15. Z. Li, J. Bai, H. Zou, “Modified two-degree-of- freedom Smith predictive control for processes with time-delay“, Measurement and Control, vol. 5, no. 3, pp. 691-697, 2020. DOI: https://doi.org/10.1177/0020294019898743
  16. M. Huba, P. Bistak, and D. Vrancic, “DOF IMC and Smith-Predictor-Based Control for Stabilised Unstable First Order Time Delayed Plants “, Mathematics 2021, vol. 9, no.9, pp. 1064, 2021. DOI: https://doi.org/10.3390/math9091064

Descargas

Los datos de descargas todavía no están disponibles.