Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Pez Cebra (Danio Rerio) Como Modelo In Vivo Para Estudios De Genotoxicidad: Evaluación De Inestabilidad Cromosómica Numérica

Resumen

Las actividades agrícolas, pecuarias y piscícolas que se desarrollan en Colombia han contribuido a la contaminación actual de las fuentes hídricas con plaguicidas, siendo este un problema ambiental en constante ascenso. Una de las fuentes hídricas con una alta tasa de contaminación es el lago Tota. Este lago ha sido catalogado como uno de los ecosistemas más amenazados del planeta por la red mundial de humedales. A pesar de los problemas ambientales que representa la contaminación de las fuentes hídricas en el país, existen muy pocos estudios que investiguen el daño citogenético generado por la exposición a agentes tóxicos. A este respecto, un modelo biológico óptimo para la evaluación de los efectos genotóxicos por la exposición ocupacional o ambiental a plaguicidas lo constituye el pez cebra, debido a su sensibilidad a los contaminantes, sensibilidad evidenciada por el daño al material cromosómico. Considerando lo anterior, el objetivo de esta investigación fue estandarizar técnicas de citogenética de bandas (Bandeo GTG) y de citogenética molecular (Hibridación In Situ por Fluorescencia - FISH), para su aplicación en estudios de genotoxicidad utilizando como modelo in vivo, larvas de pez cebra (Danio rerio). El desarrollo de este estudio permitió la estandarización de la técnica de Bandeo GTG para el conteo de cromosomas en larvas de pez cebra, así como la estandarización de la técnica FISH, importante en la evaluación de la inestabilidad cromosómica. La estandarización de técnicas de citogenética de bandas y de citogenética molecular en pez cebra, se constituye como una herramienta muy importante para la aplicación de modelos de estudio in vivo que permitan evaluar el daño cromosómico generado por la exposición a agentes genotóxicos, incluidos los plaguicidas.

Palabras clave

Citogenética, FISH, genotoxicidad, modelos in vivo, pez cebra

PDF ( Pre-Print)

Referencias

  1. D. M. Tinjacá López, “Formulación de estretegias de planificación ambiental y sectorial en la cuenca del Lago de Tota, fundamentadas en los objetivos de oferta, demanda, calidad, riesgo y gobernanza establecidos en la política nacional para la gestión integral del recurso hídrico,” Universidad Militar Nueva Granada, 2013.
  2. Republica de Colombia - Departamento Nacional de Planeación - Conpes 3801, “Conpes 3801 - Manejo Ambiental Integral de la Cuenca Hidrográfica del Lago de Tota,” Bogotá, 2014. [Online]. Available: https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/3801.pdf.
  3. C. Montañez Velasquez, “Caracterización y mapeo participativo de servicios ecosistémicos en paisajes socio-ecológicos de producción .,” Pontificia Universidad Javeriana, 2018.
  4. Corpoboyacá. Plan de ordenación y manejo de la cuenca del lago de Tota. Boyacá [Internet]. Boyacá: Pontificia Universidad Javeriana – Instituto de Estudios Ambientales para el Desarrollo; 2017. Available from: https://www.corpoboyaca.gov.co/cms/wp-content/uploads/2015/11/diagnostivo-problematica-ambiental-lago-tota.pdf
  5. P. Chaparro-Narváez and C. Castañeda-Orjuela, “Mortalidad debida a intoxicación por plaguicidas en Colombia entre 1998 y 2011,” Biomédica, vol. 35, no. 0, pp. 2–37, 2015, doi: 10.7705/biomedica.v35i0.2472.
  6. Instituto Nacional de Salud - Sistema de Vigilancia en Salud Pública. Intoxicaciones por sustancias químicas [Internet]. Bogotá; 2017. Available from: https://www.ins.gov.co/BibliotecaDigital/PRO-Intoxicaciones.pdf
  7. Secretaria de Salud de Boyacá. Informe del comportamiento epidemiológico de las intoxicaciones por sustancias químicas en Boyacá con corte a semana epidemiológica 28 de 2021 [Internet]. Boyacá; 2021. Available from: https://www.boyaca.gov.co/informes-de-eisp/
  8. Álvarez Garzón C. Efectos teratogénicos del Nitrato de Plomo en el desarrollo embrionario del pez cebra Danio rerio [Internet]. Pontificia Universidad Javeriana; 2011. Available from: https://repository.javeriana.edu.co/bitstream/handle/10554/8844/tesis788.pdf?sequence=1&isAllowed=y
  9. J. L. Freeman et al., “Definition of the zebrafish genome using flow cytometry and cytogenetic mapping,” BMC Genomics, vol. 8, no. 1, p. 195, 2007, doi: 10.1186/1471-2164-8-195.
  10. S. Zhao, J. Huang, and J. Ye, “A fresh look at zebrafish from the perspective of cancer research,” J. Exp. Clin. Cancer Res., vol. 34, no. 1, p. 80, Dec. 2015, doi: 10.1186/s13046-015-0196-8.
  11. G. J. Zhang, S. Hoersch, A. Amsterdam, C. A. Whittaker, J. A. Lees, and N. Hopkins, “Highly aneuploid zebrafish malignant peripheral nerve sheath tumors have genetic alterations similar to human cancers,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 39, pp. 16940–16945, Sep. 2010, doi: 10.1073/pnas.1011548107.
  12. A. Karami, P. Eghtesadi Araghi, M. A. Syed, and S. P. Wilson, “Chromosome preparation in fish: effects of fish species and larval age,” Int. Aquat. Res., vol. 7, no. 3, pp. 201–210, Sep. 2015, doi: 10.1007/s40071-015-0104-z.
  13. E. Gornung, I. Gabrielli, S. Cataudella, and L. Sola, “CMA3-banding pattern and fluorescence in situ hybridization with 18S rRNA genes in zebrafish chromosomes,” Chromosom. Res., vol. 5, no. 1, pp. 40–46, 1997, doi: 10.1023/A:1018441402370.
  14. D. M. Chaparro Cardozo and M. E. Peñalosa Otero, “Un Camino al Desarrollo Territorial: la especialización en la producción de Cebolla de Rama ‘Allium Fistulosum’ en el municipio de Aquitania – Boyacá,” Cuad. Latinoam. Adm., vol. 8, no. 14, pp. 69–81, Feb. 2016, doi: 10.18270/cuaderlam.v8i14.1232.
  15. M. Férnandez-Riesco, “Aplicación de nuevas herramientas biotecnológicas en la línea germinal del pez Application of new biotechnological tools in zebrafish ( Danio rerio ) germ line . Departamento de Biología Molecular,” Universidad de León, 2005.
  16. M. Mimeault and S. K. Batra, “Emergence of zebrafish models in oncology for validating novel anticancer drug targets and nanomaterials,” Drug Discov. Today, vol. 18, no. 3–4, pp. 128–140, Feb. 2013, doi: 10.1016/j.drudis.2012.08.002.
  17. Quelle Regaldíe A. Estudio experimental de las conexiones tectales y cerebrales en el pez cebra (Danio Rerio) [Internet]. Universidad de Coruña; 2014. Available from: https://ruc.udc.es/dspace/handle/2183/13894
  18. K. Bambino and J. Chu, “Zebrafish in Toxicology and Environmental Health,” in Current Topics in Developmental Biology, vol. 124, 2017, pp. 331–367.
  19. S. Solis Angeles, “Alteraciones en el desarrollo embrionario del pez cebra por exposición a muestras del Río Atoyac y descargas industriales,” Universidad Nacional Autónoma de México, 2013.
  20. J. Yen, R. M. White, and D. L. Stemple, “Zebrafish models of cancer: Progress and future challenges,” Curr. Opin. Genet. Dev., vol. 24, no. 1, pp. 38–45, Feb. 2014, doi: 10.1016/j.gde.2013.11.003.
  21. Armengol, M. (2017). El pez cebra como modelo de investigación [Instituto de Oncología Vall d’ Hebron]. https://www.researchgate.net/publication/322245677_Pez_cebra_como_modelo_en_investigacion_biomedica
  22. R. . Vargas, “Pez cebra (Danio rerio) y anestesia. Un modelo animal alternativo para realizar investigación biomédica básica,” Anest. en México, vol. 29, no. 1, pp. 86–96, 2017, [Online]. Available: http://www.scielo.org.mx/pdf/am/v29s1/2448-8771-am-29-00086.pdf.
  23. K. García, M. Salazar, and J. García, “Efecto del neonicotinoide - tiametoxam en el desarrollo embrionario del pez cebra (Danio rerio),” Rev. toxicol, vol. 35, pp. 22–27, 2018, [Online]. Available: http://rev.aetox.es/wp/wp-content/uploads/2018/06/Revista-de-Toxicologia-35.1-26-31.pdf.
  24. J. M. Spitsbergen and M. L. Kent, “The state of the art of the zebrafish model for toxicology and toxicologic pathology research - Advantages and current limitations,” Toxicol. Pathol., vol. 31, no. SUPPL., pp. 62–87, Jan. 2003, doi: 10.1080/01926230390174959.
  25. L. Rocco, A. Izzo, G. Zito, and C. Peluso, “Genotoxicity in Zebrafish (Danio rerio) Exposed to two Pharmacological Products from an Impacted Italian River,” J. Environ. Anal. Toxicol., vol. 01, no. 02, 2011, doi: 10.4172/2161-0525.1000103.
  26. D. L. Castillo-Salas, J. C. Gaytán-Oyarzun, M. López-Herrera, and M. A. Sánchez-Olivares, “Pez cebra (Danio rerio): modelo experimental en la evaluación de compuestos xenobióticos,” Pädi Boletín Científico Ciencias Básicas e Ing. del ICBI, vol. 10, no. 19, pp. 61–65, Jul. 2022, doi: 10.29057/icbi.v10i19.8870.
  27. C. Martins and P. M. Costa, “Technical Updates to the Comet Assay In Vivo for Assessing DNA Damage in Zebrafish Embryos from Fresh and Frozen Cell Suspensions,” Zebrafish, vol. 17, no. 3, pp. 220–228, Jun. 2020, doi: 10.1089/zeb.2020.1857.
  28. B. Torres, Leidy., Osorio, Ketty and Murillo B, “Efectos genotóxicos de los contaminantes ambientales, en peces de importancia comercial del río Magdalena, en el departamento del Tolima,” Rev. tumbaga, vol. 1, no. 9, pp. 21–53, 2014.
  29. M. Peñaloza, Mercedes., M. Camargo., and J. Palacio. “Genotoxicidad del cloruro de mercurio en dos especies ícticas (Prochilodus magdalenae y Oreochromis sp.,” Actual. biológicas, vol. 25, no. 79, pp. 105–111, 2003
  30. A. Canedo and T. L. Rocha, “Zebrafish (Danio rerio) using as model for genotoxicity and DNA repair assessments: Historical review, current status and trends,” Sci. Total Environ., vol. 762, p. 144084, Mar. 2021, doi: 10.1016/j.scitotenv.2020.144084.
  31. D. Matoulek, V. Borůvková, K. Ocalewicz, and R. Symonová, “GC and Repeats Profiling along Chromosomes—The Future of Fish Compositional Cytogenomics,” Genes (Basel)., vol. 12, no. 1, p. 50, Dec. 2020, doi: 10.3390/genes12010050.
  32. M. Costantini, F. Auletta, and G. Bernardi, “Isochore patterns and gene distributions in fish genomes,” Genomics, vol. 90, no. 3, pp. 364–371, Sep. 2007, doi: 10.1016/j.ygeno.2007.05.006.
  33. C. Melodelima and C. Gautier, “The GC-heterogeneity of teleost fishes,” BMC Genomics, vol. 9, no. 1, p. 632, 2008, doi: 10.1186/1471-2164-9-632.
  34. K. P. Dobrinski, K. H. Brown, J. L. Freeman, and C. Lee, “Molecular Cytogenetic Methodologies and a BAC Probe Panel Resource for Genomic Analyses in the Zebrafish,” 2011, pp. 237–257.
  35. D. Huber, L. Voith von Voithenberg, and G. V. Kaigala, “Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH?,” Micro Nano Eng., vol. 1, pp. 15–24, Nov. 2018, doi: 10.1016/j.mne.2018.10.006.
  36. J. D. Tucker, “Chromosome translocations and assessing human exposure to adverse environmental agents,” Environ. Mol. Mutagen., vol. 51, no. 8–9, pp. 815–824, Oct. 2010, doi: 10.1002/em.20561.
  37. J. L. Shepard et al., “A mutation in separase causes genome instability and increased susceptibility to epithelial cancer,” Genes Dev., vol. 21, no. 1, pp. 55–59, Jan. 2007, doi: 10.1101/gad.1470407.
  38. C. Lee and A. Smith, “Molecular Cytogenetic Methodologies and a Bacterial Artificial Chromosome (BAC) Probe Panel Resource for Genomic Analyses in Zebrafish,” 2004, pp. 241–254.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a