Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Control De Spodoptera Frugiperda Mediante Insecticida Aplicado Con Drones Y Aguilón Fumigador

Resumen

En este estudio se evaluaron diferentes tratamientos y métodos de aplicación para el control de plagas en el cultivo de maíz. Se analizaron variables como el porcentaje de incidencia de la plaga, el grado de infección del cultivo según la escala DAVIS y el número de larvas a diferentes días de aplicación. Los resultados mostraron que los tratamientos con dosis de 200 cc/ha, ya sea aplicados mediante DRON o de forma convencional, fueron los más efectivos en términos de incidencia de la plaga y grado de infección del cultivo. A los 5 días de aplicación, se observó una disminución significativa en el número de larvas en los tratamientos con dosis de 200 cc/ha aplicados mediante DRON. Sin embargo, a los 7 y 10 días, se registró un incremento moderado en el número de larvas en todos los tratamientos. Además, se encontró que la aplicación mediante DRON permitió una mejor dispersión del producto y una mayor cobertura en el área tratada. Estos hallazgos resaltan la importancia de considerar la dosis y el método de aplicación para lograr un control eficaz de las plagas en el cultivo de maíz.

Palabras clave

Gusano Cogollero, Control de plagas, Insecticidas, Drones agrícolas, Clorantraniliprole, Lambda-cyhalothrin

PDF ( Pre-Print)

Referencias

  1. Vásconez Montúfar GH, Caicedo Acosta LA, Véliz Zamora D V, Sánchez Mora FD. Producción de biomasa en cultivos de maíz: Zona central de la costa de Ecuador. Rev Cienc Soc 2021;27:417–31.
  2. Carrillo Trueba C. El origen del maíz. Naturaleza y cultura en Mesoamérica. Ciencias 2009;92.
  3. Remache M, Carrillo M, Mora R, Durango W, Morales F. Absorción de macronutrientes y eficiencia del n, en híbrido promisorio de maíz. patricia pilar, ecuador. Agronomía Costarricense 2017;41. https://doi.org/10.15517/rac.v41i2.31303.
  4. Batista-Pereira LG, Castral TC, Silva MTM da, Amaral BR, Fernandes JB, Vieira PC, et al. Insecticidal Activity of Synthetic Amides on Spodoptera frugiperda. Zeitschrift Für Naturforschung C 2006;61:196–202. https://doi.org/10.1515/znc-2006-3-408.
  5. Chapman JW, Williams T, Martínez AM, Cisneros J, Caballero P, Cave RD, et al. Does cannibalism in Spodoptera frugiperda (Lepidoptera: Noctuidae) reduce the risk of predation? Behav Ecol Sociobiol 2000;48:321–7. https://doi.org/10.1007/s002650000237.
  6. Abate T, Shiferaw B, Menkir A, Wegary D, Kebede Y, Tesfaye K, et al. Factors that transformed maize productivity in Ethiopia. Food Secur 2015;7:965–81. https://doi.org/10.1007/s12571-015-0488-z.
  7. Meivel S, Maheswari S. Remote Sensing Analysis of Agricultural Drone. Journal of the Indian Society of Remote Sensing 2021;49:689–701. https://doi.org/10.1007/s12524-020-01244-y.
  8. Sabando KVC, Mera GAM, Esmeraldas AA V, Bowen MR. Evaluación de la distribución de gotas en la pulverización de plaguicida en maíz por el método tradicional y por dron. La Técnica 2020:65–78.
  9. Zhao Y-X, Huang J-M, Ni H, Guo D, Yang F-X, Wang X, et al. Susceptibility of fall armyworm, Spodoptera frugiperda (J.E. Smith), to eight insecticides in China, with special reference to lambda-cyhalothrin. Pestic Biochem Physiol 2020;168:104623. https://doi.org/10.1016/j.pestbp.2020.104623.
  10. Liu Y, Zhang H, He F, Li X, Tan H, Zeng D. Combined toxicity of chlorantraniliprole, lambda-cyhalothrin, and imidacloprid to the silkworm Bombyx mori (Lepidoptera: Bombycidae). Environmental Science and Pollution Research 2018;25:22598–605. https://doi.org/10.1007/s11356-018-2374-7.
  11. Feng B, Zhi H, Chen H, Cui B, Zhao X, Sun C, et al. Development of Chlorantraniliprole and Lambda Cyhalothrin Double-Loaded Nano-Microcapsules for Synergistical Pest Control. Nanomaterials 2021;11:2730. https://doi.org/10.3390/nano11102730.
  12. Pes MP, Melo AA, Stacke RS, Zanella R, Perini CR, Silva FMA, et al. Translocation of chlorantraniliprole and cyantraniliprole applied to corn as seed treatment and foliar spraying to control Spodoptera frugiperda (Lepidoptera: Noctuidae). PLoS One 2020;15:e0229151. https://doi.org/10.1371/journal.pone.0229151.
  13. Coral Valenzuela JV, Andrade Bolaños HJ, Pumisacho Gualoto MM, Caicedo Chávez JD, Salazar Vizuete DR. Caracterización morfológica y agronómica de dos genotipos de maíz (Zea mays L.) en la zona media de la parroquia Malchinguí. ACI Avances En Ciencias e Ingenierías 2019;11. https://doi.org/10.18272/aci.v11i1.1091.
  14. Vargas JD, Arregocés IC, Solano AD, Peña KK. Aprendizaje basado en proyectos soportado en un diseño tecno-pedagógico para la enseñanza de la estadística descriptiva. Formación Universitaria 2021;14:77–86. https://doi.org/10.4067/S0718-50062021000600077.
  15. Suto J. Codling Moth Monitoring with Camera-Equipped Automated Traps: A Review. Agriculture 2022;12:1721. https://doi.org/10.3390/agriculture12101721.
  16. Oluwaseun Adetunji C, Olaniyan OT, Anthony Anani O, Inobeme A, Osemwegie OO, Hefft D, et al. Artificial Intelligence and Automation for Precision Pest Management. Sensing and Artificial Intelligence Solutions for Food Manufacturing, New York: CRC Press; 2023, p. 49–70. https://doi.org/10.1201/9781003207955-4.
  17. Ismail SM. Effect of sublethal doses of some insecticides and their role on detoxication enzymes and protein-content of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Bull Natl Res Cent 2020;44:35. https://doi.org/10.1186/s42269-020-00294-z.
  18. Gupta G, Kumar NR. Growth and development of ladybird beetle Coccinella septempunctata L. (Coleoptera: Coccinellidae), on plant and animal based protein diets. J Asia Pac Entomol 2017;20:959–63. https://doi.org/10.1016/j.aspen.2017.07.008.
  19. Rizzo D, Da Lio D, Bartolini L, Cappellini G, Bruscoli T, Salemi C, et al. Development of Three Molecular Diagnostic Tools for the Identification of the False Codling Moth (Lepidoptera: Tortricidae). J Econ Entomol 2021;114:1796–807. https://doi.org/10.1093/jee/toab103.
  20. Basnet P, Dhital R, Rakshit A. Biopesticides. Biopesticides, Elsevier; 2022, p. 107–16. https://doi.org/10.1016/B978-0-12-823355-9.00019-5.
  21. Marshall AT, Beers EH. Efficacy and Nontarget Effects of Net Exclusion Enclosures on Apple Pest Management. J Econ Entomol 2021;114:1681–9. https://doi.org/10.1093/jee/toab094.
  22. Moses-Gonzales N, Brewer MJ. A Special Collection: Drones to Improve Insect Pest Management. J Econ Entomol 2021;114:1853–6. https://doi.org/10.1093/jee/toab081.
  23. Brookes G. Environmental Impacts of Genetically Modified (GM) Crop Use: Impacts on Pesticide Use and Carbon Emissions. Plant Biotechnology, Cham: Springer International Publishing; 2021, p. 87–101. https://doi.org/10.1007/978-3-030-68345-0_7.
  24. Van den Berg J, Prasanna BM, Midega CAO, Ronald PC, Carrière Y, Tabashnik BE. Managing Fall Armyworm in Africa: Can Bt Maize Sustainably Improve Control? J Econ Entomol 2021;114:1934–49. https://doi.org/10.1093/jee/toab161.
  25. Martel V, Johns RC, Jochems-Tanguay L, Jean F, Maltais A, Trudeau S, et al. The Use of UAS to Release the Egg Parasitoid Trichogramma spp. (Hymenoptera: Trichogrammatidae) Against an Agricultural and a Forest Pest in Canada. J Econ Entomol 2021;114:1867–81. https://doi.org/10.1093/jee/toaa325.
  26. Karar ME, Alsunaydi F, Albusaymi S, Alotaibi S. A new mobile application of agricultural pests recognition using deep learning in cloud computing system. Alexandria Engineering Journal 2021;60:4423–32. https://doi.org/10.1016/j.aej.2021.03.009.
  27. Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, et al. Developmental Control of a Lepidopteran Pest Spodoptera exigua by Ingestion of Bacteria Expressing dsRNA of a Non-Midgut Gene. PLoS One 2009;4:e6225. https://doi.org/10.1371/journal.pone.0006225.
  28. Vélez M, Betancourt C, Mendoza J. Evaluación de diferentes momentos de aplicación de insecticida Metomil 90% para el control del gusano cogollero (Spodoptera frugiperda) en el cultivo de maíz. Ciencia y Tecnología 2021;14:33–40. https://doi.org/10.18779/cyt.v14i2.500.
  29. Lionovna Z, Mikhailovna L. Chemicals for Protecting Corn Crops from Cotton Budworm. KnE Life Sciences 2021. https://doi.org/10.18502/kls.v0i0.9030.
  30. Hernández-Trejo A, Estrada Drouaillet B, Rodríguez-Herrera R, García Giron JM, Patiño-Arellano SAA, Osorio-Hernández E. Importancia del control biológico de plagas en maíz (Zea mays L.). Rev Mex De Cienc Agric 2019;10:803–13. https://doi.org/10.29312/remexca.v10i4.1665.
  31. Guerra Blandino M, Poveda Suárez J, Miranda Calero S, Rivers Carcache E, Ruíz Urbina J, Lacayo Romero M, et al. Análisis de la composición proximal y potencial insecticida de la semilla de guanábana (Annona muricata L.) para el control del gusano cogollero del maíz (Spodoptera frugiperda J. E. Smith). Revista Torreón Universitario 2020;9:27–44. https://doi.org/10.5377/torreon.v9i24.9722.
  32. St. Clair CR, Gassmann AJ. Linking land use patterns and pest outbreaks in Bt maize. Ecological Applications 2021;31. https://doi.org/10.1002/eap.2295.
  33. Balaško MK, Bažok R, Mikac KM, Benítez HA, Suazo MJ, Viana JPG, et al. Population Genetic Structure and Geometric Morphology of Codling Moth Populations from Different Management Systems. Agronomy 2022;12:1278. https://doi.org/10.3390/agronomy12061278.
  34. Qiao Z, Li P, Yao X, Sun S, Li X, Zhang F, et al. Cyantraniliprole seed treatment effectively controls wireworms (Pleonomus canaliculatus Faldermann) and white grubs (Anomala corpulenta Motschulsky) in maize fields. Heliyon 2023;9:e17302. https://doi.org/10.1016/j.heliyon.2023.e17302.
  35. Yanqui F, Alarcón J, Carrasco H, Caballero S, Sauñe B, Chávez D, et al. Threshold of treatment of the fall armyworm (Spodoptera frugiperda) in the crop of starchy corn (Zea mays L. ssp amylaceo). Manglar 2022;19:291–7. https://doi.org/10.17268/manglar.2022.037.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.