Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Evaluación del cerámico con estructura tipo perovskita LaFe0,2Co0,8O3 / Evaluation of the perovskite LaFe0.2Co0.8O3

Resumen

Resumen

Se sintetizó la perovskita LaFe0,2Co0,8O3, usando el método de polimerización con ácido cítrico. Las caracterizaciones de los precursores con espectroscopia infrarroja (FT-IR), ultravioleta visible (UV-vis), y análisis térmicos (TGA-DTA), revelaron la presencia de especies tipo citrato y la consolidación de una estructura estable a partir de los 700°C. Análisis de difracción de rayos X (XRD), energía dispersiva de rayos X (EDX), microscopia electrónica de barrido (SEM) y espectroscopia Raman, confirmaron la consolidación de un sistema cristalino tipo LaCoO3 de fase simple romboédrica, una superficie homogénea y porosa, y tamaño de partícula nanométrico. La evaluación mediante espectroscopia de impedancias (IS), desde temperatura ambiente hasta 900°C, mostró un material con alta conductividad eléctrica y comportamiento semiconductor.

 

Abstract

The perovskite LaFe0.2Co0.8O3 was synthesized using polymerization with citric acid method. Characterizations of the precursors with Fourier transform infrared spectroscopy (FT-IR), ultraviolet visible spectroscopy (UV-vis), and thermal analysis (TGA-DTA), revealed the presence of species citrate type, and formation of a stable structure from up to 700°C. Analysis by means of X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscopy (SEM) and Raman spectroscopy, confirmed the consolidation of a crystal system LaCoO3 type, of rhombohedral single phase, with homogeneous and porous surface and nanometer particle size. The evaluation by impedance spectroscopy (IS) from room temperature to 900°C, showed a material with good electrical conductivity and semiconductor type behavior.


Palabras clave

Estructura tipo perovskita, Polimerización con ácido citrico, Óxido semiconductor. / Perovskite Type Structure, Polymerization with Citric Acid, Semiconductor Type Oxide.

PDF

Citas

  1. Steven McIntosh, Raymond J. Gorte, “Direct Hydrocarbon Solid Oxide Fuel Cells”, Chem. Rev., vol. 104, pp. 4845-4865, 2004. Disponible en: http://dx.doi.org/10.1021/cr020725g DOI: https://doi.org/10.1021/cr020725g
  2. Nam-Gyu Park. Perovskite solar cells: an emerging photovoltaic technology. Materials Today, vol 18 (2), pp. 65-72, 2015. Disponible en: http://dx.doi.org/10.1016/j.mattod.2014.07.007 DOI: https://doi.org/10.1016/j.mattod.2014.07.007
  3. Fengyu Shen, Kathy Lu, “Comparative study of La0.6Sr0.4Co0.2Fe0.8O3, Ba0.5Sr0.5Co0.2Fe0.8O3 and Sm0.5Sr0.5Co0.2Fe0.8O3 cathodes and the effect of Sm0.2Ce0.8O2 block layer in solid oxide fuel cells”, International journal o f hydrogen energy, vol. 40, pp. 16457- 16465, 2015. Disponible en: http://dx.doi.org/10.1016/j.ijhydene.2015.09.148 DOI: https://doi.org/10.1016/j.ijhydene.2015.09.148
  4. Carlos Moure; Octavio Peña. “Recent advances in perovskites: Processing and properties”, Progress in Solid State Chemistry, pp. 1-26, 2015. Disponible en: http://dx.doi.org/10.1016/j.progsolidstchem.2015.09.001 DOI: https://doi.org/10.1016/j.progsolidstchem.2015.09.001
  5. Qin Zhang, Tao Wei, Yun-Hui Huang, “Electrochemical performance of double perovskite Ba2MMoO6 (M = Fe, Co, Mn, Ni) anode materials for solid oxide fuel cells”, Journal of Power Sources, vol. 198, pp. 59–65, 2012. Disponible en: http://dx.doi.org/10.1016/j.jpowsour.2011.09.092 DOI: https://doi.org/10.1016/j.jpowsour.2011.09.092
  6. Kobayashi K-I, Kimura T, Sawada H, Terakura K, Tokura Y. Nature 1998; 395: 677. Disponible en: http://refhub.elsevier.com/S0079-6786(14)00033-8/sref3 DOI: https://doi.org/10.1038/27167
  7. Sami Vasala, Maarit Karppinen, “A2B´B´´O6 perovskites: A review”, Progress in Solid State Chemistry, vol. 43, pp. 1-36, 2015. Disponible en: http://dx.doi.org/10.1016/j.progsolidstchem.2014.08.001 DOI: https://doi.org/10.1016/j.progsolidstchem.2014.08.001
  8. Milos Petrovic, Vijila Chellappan, Seeram Ramakrishna, “Perovskites: Solar cells & engineering applications – materials and device developments”, Solar Energy, vol. 122, pp. 678–699, 2015. Disponible en: http://dx.doi.org/10.1016/j.solener.2015.09.041 DOI: https://doi.org/10.1016/j.solener.2015.09.041
  9. Dammak, T., Elleuch, S., Bougzhala, H., Mlayah, A., Chtourou, R., Abid, Y., “Synthesis, vibrational and optical properties of a new three-layered organic inorganic perovskite (C4H9NH3)4Pb3I4Br6”, J. Lumin. vol. 129 (9), pp. 893–897, 2009. Disponible en: http://refhub.elsevier.com/S0038-092X(15)00527-7/h0170 DOI: https://doi.org/10.1016/j.jlumin.2009.04.020
  10. Boutal, N., Rekhila, G., Taıbi, K., Trari, M., “Relaxor ferroelectric and photo-electrochemical properties of lead-free Ba1-xEu2x/3(Ti0.75- Zr0.25)O3 ceramics. Application to chromate reduction”. Sol. Energy, vol 99, pp. 291–298, 2014. DOI: https://doi.org/10.1016/j.solener.2013.11.019
  11. W. Dong, X. Li, J. Yu, W. Guo, B. Li, L. Tan, C. Li, J. Shi, G. Wang, Mater. Lett., vol. 67, pp. 131–134, 2012. Disponible en: http://refhub.elsevier.com/S0926-3373(15)30319-2/sbref0805 DOI: https://doi.org/10.1016/j.matlet.2011.09.045
  12. C. Jackson Stolle, Taylor B. Harvey, Brian A. Korgel, “Nanocrystal photovoltaics: a review of recent progress”, Current Opinion in Chemical Engineering, vol. 2, p.p 160–167, 2013. Disponible en: http://dx.doi.org/10.1016/j.coche.2013.03.001 DOI: https://doi.org/10.1016/j.coche.2013.03.001
  13. Christopher J. Benedict, Ashok Rao, Ganesh Sanjeev, G. S. Okram, P. D. Babu, “A systematic study on the effect of electron beam irradiation on structural, electrical, thermo-electric power and magnetic property of LaCoO3”, Journal of Magnetism and Magnetic Materials, vol. 397, pp. 145–151, 2016. Disponible en: http://dx.doi.org/10.1016/j.jmmm.2015.08.111 DOI: https://doi.org/10.1016/j.jmmm.2015.08.111
  14. V. V. Mehta, S. Bose, J. M. Iwata-Harms, E. Arenholz, C. Leighton, Y. Suzuki, Phys. Rev. B, vol. 87, 2013. Disponible en: http://refhub.elsevier.com/S0304-8853(15)30526-6/sbref3 DOI: https://doi.org/10.1103/PhysRevB.87.020405
  15. L. Predoana, B. Malic, D. Crisan, N. Dragan, M. Anastasescu, J. Calderon-Moreno, R. Scurtu, M. Zaharescu, “LaCoO3 ceramics obtained from reactive powders”, Ceramics International, vol. 38, pp. 5433–5443, 2012. Disponible en: http://dx.doi.org/10.1016/j.ceramint.2012.03.054
  16. Ahmed Galal, Nada F. Atta, Shimaa M. Ali, “Investigation of the catalytic activity of LaBO3 (B = Ni, Co, Fe or Mn) prepared by the microwave-assisted method for hydrogen evolution in acidic medium”, Electrochimica Acta, vol. 56, pp. 5722–5730, 2011. Disponible en: http://dx.doi.org/10.1016/j.electacta.2011.04.045 DOI: https://doi.org/10.1016/j.electacta.2011.04.045
  17. J. Alvarado-Flores, L. Ávalos-Rodríguez, “Materiales para ánodos, cátodos y electrolitos utilizados en celdas de combustible de óxido sólido (SOFC)”, Revista Mexicana de Física, vol. 59, pp. 66–87, 2013.
  18. H.C. Chang, Solid State Ionics, vol. 180, pp. 412–417, 2009. DOI: https://doi.org/10.1016/j.ssi.2009.01.018
  19. S. Gaikward, S. Dhesphande, Y. Khollam, S. Violet, V. Ravi, “Coprecipitation method for the preparation ofnanocrystalline ferroelectric CaBi2Ta2O9”, Mater. Lett., vol. 58 (27-28), pp. 3474–3476, 2004. Disponible en: http://dx.doi.org/10.1016/j.matlet.2004.07.004. DOI: https://doi.org/10.1016/j.matlet.2004.07.004
  20. L. Predoana, B. Malic, D. Crisan, N. Dragan, M. Anastasescu, J. Calderon-Moreno, R. Scurtu, M. Zaharescu, “LaCoO3 ceramics obtained from reactive powders”, Ceramics International, vol. 38, pp. 5433–5443, 2012. Disponible en: http://dx.doi.org/10.1016/j.ceramint.2012.03.054 DOI: https://doi.org/10.1016/j.ceramint.2012.03.054
  21. José Juan Alvarado Flores, Ilya Espitia Cabrera, Jaime Espino Valencia y Armando Reyes Rojas, “Impregnación de la perovskita La0.8Sr0.2Cr0.5Mn0.5O3-δ como ánodo en celdas SOFC”, boletín de la sociedad española de cerámica y vidrio, vol. 54, pp. 198–208, 2015. Disponible en: http://dx.doi.org/10.1016/j.bsecv.2015.08.001 DOI: https://doi.org/10.1016/j.bsecv.2015.08.001
  22. Z. Shao, W. Zhou, Z. Zhu, “Advanced synthesis of materialsfor intermediate-temperature solid oxide fuel cells”, Prog. Mater. Sci., vol. 57 (4), pp. 804–874, 2012. Disponible en: http://dx.doi.org/10.1016/j.pmatsci.2011.08.002. DOI: https://doi.org/10.1016/j.pmatsci.2011.08.002
  23. E. García-López, G. Marcì, F. Puleo, V. La Parola, L. F. Liotta, “La1−xSrxCo1−yFeyO3-δ perovskites: Preparation, characterization and solar photocatalytic activity”, Applied Catalysis B: Environmental, vol. 178, pp. 218–225, 2015. Disponible en: http://dx.doi.org/10.1016/j.apcatb.2014.09.014 DOI: https://doi.org/10.1016/j.apcatb.2014.09.014
  24. Xiaokun Yang, Lisha Yang, Wei Fan, Hongfei Lin., “Effect of redox properties of LaCoO3 perovskite catalyst on production of lactic acid from cellulosic biomass”, Catalysis Today, vol. 269, pp. 56–64, 2016. Disponible en: http://dx.doi.org/10.1016/j.cattod.2015.12.003 DOI: https://doi.org/10.1016/j.cattod.2015.12.003
  25. Daniel D. Athayde, Douglas F. Souza, Alysson M. A. Silva, Daniela Vasconcelos, Eduardo H. M. Nunes, João C. Diniz da Costa, Wander L. Vasconcelos. “Review of perovskite ceramic synthesis and membrane preparation methods”, Ceramics International, vol. 42, pp. 6555–6571, 2016. Disponible en: http://dx.doi.org/10.1016/j.ceramint.2016.01.130 DOI: https://doi.org/10.1016/j.ceramint.2016.01.130
  26. Elham Ghiasi, Azim Malekzadeh, Mahnaz Ghiasi, “Moderate concentration of citric acid for the formation of LaMnO3 and LaCoO3 nano-perovskites”. Journal of Rare Earths, vol. 31 (10), pp. 997-1002, 2013. Disponible en: http://dx.doi.org/10.1016/S1002-0721(12)60393-7 DOI: https://doi.org/10.1016/S1002-0721(13)60020-4
  27. Refka Andoulsi, Karima Horchani-Naifer, Mokhtar Férid, “Effect of the preparation route on the structure and microstructure of LaCoO3”. Chemical Papers, vol. 68 (5), pp. 608–613, 2014. Disponible en: http://dx.doi.org/10.2478/s11696-013-0490-x DOI: https://doi.org/10.2478/s11696-013-0490-x
  28. A.Worayingyong, P. Kangvansura, S. Kityakarn, Schiffbase, “Complex sol–gel method for LaCoO3 perovskite preparation with high-adsorbed oxygen colloids” Surf. A: Physicochem. Eng. Asp, vol. 320, pp. 123–129, 2008. DOI: https://doi.org/10.1016/j.colsurfa.2008.01.042
  29. K. S Weil, J. S. Hardy, J. Y. Kim, “A new technique for joining ceramic and metal components in high temperature electrochemical devices”, J. Adv. Mater., vol. 2, pp. 84-94, 2007.
  30. M. T. Tsai, “Effects of hydrolysis processing on the character of forsterite gel fibers. Part I: preparation, spinnability and molecular structure”, Journal of the European Ceramic Society, vol. 22, pp. 1073–1083. 2002. Disponible en: http://dx.doi.org/10.1016/s0955-2219(01)00417-4. DOI: https://doi.org/10.1016/S0955-2219(01)00417-4
  31. F. Kousar, S. Nazim, M. F. Warsi, M. A. Khan, M. N. Ashiq, Z. A. Gilani,I. Shakir, A.Wadood, “La1-xEuxFeOs3 nanoparticles: Fabrication via micro-emulsion route for high frequency devices applications”, J.Alloy.Compd., vol. 629, pp. 315–318, 2015. Disponible en: http://refhub.elsevier.com/S0304-8853(15)30167-0/sbref11 DOI: https://doi.org/10.1016/j.jallcom.2014.12.212
  32. N. N. Lubinskii,, L. A. Bashkirov , G. S. Petrov , S. V. Shevchenko, I. N. Kandidatova, M. V. Bunshinskii, “Crystal structure and IR spectra of lanthanum cobaltites-gallates”, Glass and Ceramics, vol. 66, pp. 59–62, 2009. Disponible en: http://dx.doi.org/10.1007/s10717-009- 9124-8. DOI: https://doi.org/10.1007/s10717-009-9124-8
  33. R. Brackmann, C. A. Perez, M. Schmal. “LaCoO3 perovskite on ceramic monoliths - Pre and post reaction analyzes of the partial oxidation of methane”. International journal of hydrogen energy, vol. 39, pp. 13991 – 14007, 2014. Disponible en: http://dx.doi.org/10.1016/j.ijhydene.2014.07.027 DOI: https://doi.org/10.1016/j.ijhydene.2014.07.027
  34. Qurshia Choudhry, Muhammad Azhar Khan, Gulfam Nasar, Azhar Mahmood, Muhammad Shahid, Imran Shakir, Muhammad Farooq Warsi, “Synthesis, characterization and study of magnetic, electrical and dielectric properties of La1-xDyxCo1-yFeyO3 nanoparticles prepared by wet chemical route”. Journal of Magnetism and Magnetic Materials, vol. 393, pp. 67–72, 2015. Disponible en: http://dx.doi.org/10.1016/j.jmmm.2015.05.040 DOI: https://doi.org/10.1016/j.jmmm.2015.05.040
  35. A. Mahmood, M. Nadeem, B. Bashir, I. Shakir, M. N. Ashiq, M. Ishaq, A. Jabbar, R. Parveen, M. Shahid, M. F. Warsi, “Synthesis,characterization and studies of various structural, physical, magnetic, electrical and dielectric parameters for La1-xDyxNi1-yMnyO3 nanoparticles”, J.Magn.Magn.Mater. vol. 348, pp. 82–87, 2013. Disponible en: http://refhub.elsevier.com/S0304-8853(15)30167-0/sbref14 DOI: https://doi.org/10.1016/j.jmmm.2013.08.028
  36. Settakorn Upasen, Pierre Batocchi, Fabrice Mauvy, Aneta Slodczyk, Philippe Colomban, “Chemical andstructuralstabilityof La0.6Sr0.4Co0.2Fe0.8O3-δ ceramic vs. medium/high water vapor pressure”. Ceramics International, vol. 41, pp. 14137–14147, 2015. Disponible en: http://dx.doi.org/10.1016/j.ceramint.2015.07.035 DOI: https://doi.org/10.1016/j.ceramint.2015.07.035
  37. B. Philippeau, F. Mauvy, C. Mazataud, S. Fourcade, J. C. Grenier, “Comparative study of electrochemical properties of mixed conducting Ln2NiO4+d (Ln = La, Pr, Nd) and La0.6Sr0.4Co0.2Fe0.8O3+d as SOFC cathodes associated to Ce0.9Gd0.1O2-d, La0.8Sr0.2Ga0.8Mg0.2O3-d and La9Sr1Si6O26.5 electrolytes, Solid State Ion., vol. 249–250, pp. 17–25, 2015. Disponible en: http://refhub.elsevier.com/S0272-8842(15)01321-8/sbref3 DOI: https://doi.org/10.1016/j.ssi.2013.06.009
  38. C. C. Wang, T. Becker, K. Chen, L. Zhao, B. Wei, S. P. Jiang, “Effect of temperatura on the chromium deposition and poisoning of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of solid oxide fuel cells, Electrochim. Acta, vol. 139, pp. 173–179, 2014. Disponible en: http://refhub.elsevier.com/S0272-8842(15)01321-8/sbref35 DOI: https://doi.org/10.1016/j.electacta.2014.07.028
  39. Augusto Mejía Gómeza, Joaquín Sacanella, Ana Gabriela Leyva, Diego G. Lamas, “Performance of La0.6Sr0.4Co1-yFeyO3 (y = 0.2, 0.5 and 0.8) nanostructured cathodes for intermediate-temperature solid-oxide fuel cells: Influence of microstructure and composition”, Ceramics International, vol. 42, pp. 3145–3153, 2016. Disponible en: http://dx.doi.org/10.1016/j.ceramint.2015.10.104 DOI: https://doi.org/10.1016/j.ceramint.2015.10.104
  40. E. Siebert, A. Boréave, F. Gaillard, T. Pagnier, “Electrochemical and Raman study of La0.7Sr0.3Co0.8Fe0.2O3-δ reduction”, Solid State Ion., vol. 247– 248, pp. 30–40, 2013. Disponible en: http://dx.doi.org/10.1016/j.ssi.2013.05.006 DOI: https://doi.org/10.1016/j.ssi.2013.05.006
  41. W. Araki, T. Yamaguchi, Y. Arai, J. Malzbender, “Strontium Surface segregation in La0.58Sr0.4Co0.2Fe0.8O3-δ annealed under compression”, Solid StateIon., vol. 268(Part A), pp.1–6, 2014. Disponible en: http://refhub.elsevier.com/S0272-8842(15)01321-8/sbref38 DOI: https://doi.org/10.1016/j.ssi.2014.09.019
  42. Md. Motin Seikh, L. Sudheendra, Chandrabhas Narayana, C.N.R. Rao, “A Raman study of the temperature-induced low-to-intermediate-spin state transition in LaCoO3”, Journal of Molecular Structure, vol. 706, pp. 121–126, 2004. Disponible en: http://dx.doi.org/10.1016/j.molstruc.2004.03.058 DOI: https://doi.org/10.1016/j.molstruc.2004.03.058
  43. Nguyen Van Minh, In-Sang Yang, “A Raman scattering study of structural changes in LaMn1-xCoxO3+d system”, Vibrational Spectroscopy, vol. 42, pp. 353–356, 2006. Disponible en: http://dx.doi.org/10.1016/j.vibspec.2006.05.027 DOI: https://doi.org/10.1016/j.vibspec.2006.05.027
  44. Fabio Souza Toniolo, Robert Newton S.H. Magalhaes, Carlos Andre C. Perez, Martin Schmal, “Structural investigation of LaCoO3 and LaCoCuO3 perovskite-type oxides and the effect of Cu on coke deposition in the partial oxidation of methane”. Applied Catalysis B: Environmental, vol. 117– 118, pp. 156–166, 2012. Disponible en: http://dx.doi.org/10.1016/j.apcatb.2012.01.009 DOI: https://doi.org/10.1016/j.apcatb.2012.01.009
  45. A. Reyes-Rojas, J. Alvarado-Flores, H. Esparza-Poncea, M. Esneider-Alcala, I. Espitia-Cabrera, E. Torres-Moye. “Symmetry breaking and electrical conductivity of La0.7Sr0.3Cr0.4Mn0.6O3-δ perovskite as SOFC anode material”, Materials Chemistry and Physics, vol. 126, pp. 773–779, 2011. Disponible en: http://dx.doi.org/10.1016/j.matchemphys.2010.12.045 DOI: https://doi.org/10.1016/j.matchemphys.2010.12.045
  46. Junling Meng, Xiaojuan Liua, Chuangang Yao, Xiong Zhang, Xiliang Liu, Fanzhi Meng, Jian Meng, “Investigations on structures, thermal expansion and electrochemical properties of La0.75Sr0.25Cu0.5-xCoxMn0.5O3-δ (x = 0, 0.25, and 0.5) as potential cathodes for intermediate temperature solid oxide fuel cells”, Electrochimica Acta, vol. 186, pp. 262–270, 2015. Disponible en: http://dx.doi.org/10.1016/j.electacta.2015.10.166 DOI: https://doi.org/10.1016/j.electacta.2015.10.166
  47. Byung Hyun Park, Gyeong Man Choi. “Ex-solution of Ni nanoparticles in a La0.2Sr0.8Ti1-xNixO3−δ alternative anode for solid oxide fuel cell”, Solid State Ionics, vol. 262, pp. 345–348, 2014. Disponible en: http://dx.doi.org/10.1016/j.ssi.2013.10.016 DOI: https://doi.org/10.1016/j.ssi.2013.10.016

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

<< < 1 2 3 4 5 6 7 > >> 

También puede {advancedSearchLink} para este artículo.