Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Síntesis, actividad antibacteriana e interacción del ADN con complejos de inclusión entre compuestos lantánidos y β-ciclodextrina

Resumen

En este trabajo se han sintetizado complejos de lantánidos a partir de los derivados cloruros de La(III), Ce(III), Sm (III) e Yb(III) con ligandos cinamato, presentando coordinación bidentada entre el grupo carboxilo del ligando y el metal lantánido. Estos compuestos se utilizaron como huéspedes de la β-ciclodextrina con el fin de obtener complejos de inclusión mediante el método de co-precipitación, utilizando N,N-dimetilformamida como disolvente. Los productos de inclusión obtenidos fueron caracterizados mediante espectroscopia IR-ATR, Raman, UV-vis, RMN 1H, RMN 13C, DRX, TGA-DSC, análisis elemental y complexometría con EDTA. Se realizaron pruebas de actividad antibacteriana empleando 6 cepas ATTC (S. aureus ATCC 25923, S. aureus ATCC 29213, E. coli ATCC 25922, P. aeruginosa ATCC 27853, S. Typhimurium ATCC 14028 y K. pneumoniae ATCC BAA-2146) mediante el método de microdilución con caldo Mueller-Hinton; los resultados de actividad biológica para los complejos lantánidos permitieron evidenciar el efecto sinérgico entre el catión lantánido y el ligando cinamato. Igualmente, para los complejos de inclusión se observó una disminución de la concentración mínima inhibitoria (CMI) respecto a los complejos lantánidos iniciales. Los resultados obtenidos con el ADN de timo de ternera y el ADN plasmídico pBR322 permiten proponer una interacción electrostática entre los complejos evaluados y la estructura molecular del ADN.

Palabras clave

actividad antibacteriana, complejos de inclusión, complejos lantánidos, interacción con ADN

PDF

Biografía del autor/a

Dorian Polo Cerón

Es Químico por la Universidad Nacional de Colombia (1998-2003), trabajó un año en la industria colombiana desempeñando el cargo de jefe de producción y realizó sus estudios de Doctorado en España (2003-2008) en el Departamento de Tecnología Química y Ambiental (Universidad Rey Juan Carlos) a través de una beca predoctoral, obteniendo el grado de Doctor con Mención de Doctor Europeo con la máxima calificación (Sobresaliente “cum laude”) en septiembre de 2008. Su Tesis Doctoral de título “Síntesis de Nuevos Complejos Metaloceno con Aplicaciones en la Polimerización de Olefinas”. Durante su tesis doctoral, realizó una estancia predoctoral de tres meses, en Inglaterra, como Becario en la Universidad de Bristol, bajo la supervisión del profesor Robin Bedford.

 

En el año 2009 realizó una estancia postdoctoral (14 meses) en el grupo de los profesores Glen Deacon y Peter Junk en Monash University. Durante este período postdoctoral en Australia, investigó sobre “Síntesis de complejos metálicos con lantánidos, empleando como ligandos formamidinas y carbodimidas”.

 

A partir de Agosto de 2010, después de participar en un concurso de méritos obtuvo la plaza como profesor nombrado de la Universidad del Valle, en el área de Química Inorgánica. Actualmente, está vinculado al grupo de investigación LICAP categorizado como A por Colciencias, en donde dirige la línea de investigación en Bioinorgánica. Durante su carrera investigadora, ha participado en 9 proyectos de investigación: Unión Europea (1), Universidades (8), los cinco últimos como investigador principal, en la actualidad dos de ellos se encuentran en desarrollo. Ha publicado hasta la fecha un total de 17 artículos en revistas internacionales de reconocido prestigio. Además, ha escrito el libro: “Aplicaciones de complejos metaloceno en la polimerización de olefinas”. Ha presentado un total de 24 Contribuciones a congresos, siete (7) de ellas como comunicaciones orales.

 

El Dr. Polo-Cerón mantiene colaboraciones con el profesor Peter Junk (Monash University) sobre la síntesis de complejos lantánidos y con el profesor Santiago Gómez Ruiz (Universidad Rey Juan Carlos) sobre la síntesis de complejos metálicos con posible actividad biológica. Igualmente, ha planteado colaboraciones científicas con profesores asociados a la Universidad de Antioquia, Universidad Santiago de Cali y con investigadores del PECET y el Laboratorio de Salud Departamental Aníbal Patiño.

 

Ha dirigido 3 proyectos fin de carrera para la obtención del título en Ingeniería Química (Universidad Rey Juan Carlos). En el Departamento de Química de la Universidad del Valle ha dirigido tres (3) trabajos de pregrado, una (1) tesis de maestría y actualmente es director de cuatro (4) estudiantes de pregrado y tres (3) estudiantes de postgrado. Es editor asociado de EJournal of Chemistry at Hindawi Publishing Corporation y hace parte del comité del programa del Departamento de Química de la Universidad del Valle.


Citas

  1. G. Wright, “Solving the antibiotics crisis”, ACS Infect. Dis., vol. 1, no. 2, pp. 80-84, Jan. 2015. http://pubs.acs.org/doi/abs/10.1021/id500052s. DOI: https://doi.org/10.1021/id500052s
  2. R. Hamidpour, M. Hamidpour, S. Hamidpour, M. Shahlari, “Cinnamon from the selection of traditional applications to its novel effects on the inhibition of angiogenesis in cancer cells and prevention of Alzheimer's disease, and a series of functions such as antioxidant, anticholesterol, antidiabetes, antibacterial, antifungal, nematicidal, acaracidal, and repellent activities”, J. Tradit. Complement. Med., vol. 5, no. 2, pp. 66-70, Apr. 2015. https://doi.org/10.1016/j.jtcme.2014.11.008. DOI: https://doi.org/10.1016/j.jtcme.2014.11.008
  3. Y. Zhang, X. Liu, Y. Wang, P. Jiang, S. Y. Queck, “Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus”, Food Control, vol. 59, pp. 282-289, Jan. 2016. https://doi.org/10.1016/j.foodcont.2015.05.032. DOI: https://doi.org/10.1016/j.foodcont.2015.05.032
  4. C. Letizia, J. Cocchiara, A. Lapczynski, J. Lalko, A. Api, “Fragrance material review on cinnamic acid”, Food Chem. Toxicol., vol. 43, no. 6, pp. 925-943, Jun. 2005. https://doi.org/10.1016/j.fct.2004.09.015. DOI: https://doi.org/10.1016/j.fct.2004.09.015
  5. B. Narasimhan, D. Belsare, D. Pharande, V. Mourya, A. Dhake, “Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations”, Eur. J. Med. Chem., vol. 39, no. 10, pp. 827-834. Oct. 2004. https://doi.org/10.1016/j.ejmech.2004.06.013. DOI: https://doi.org/10.1016/j.ejmech.2004.06.013
  6. P. Sharma, “Cinnamic acid derivatives: A new chapter of various pharmacological activities”. J. Chem. Pharm. Res., vol. 3, no. 2, pp. 403-423. Jan. 2011. http://www.jocpr.com/abstract/cinnamic-acid-derivatives-a-new-chapter-of-various-pharmacological-activities-712.html.
  7. S. Venkateswarlu, M. Ramachandra, A. Krishnaraju, G. Trimurtulu, G. Subbaraju, “Antioxidant and antimicrobial activity evaluation of polyhydroxycinnamic acid ester derivatives”, Indian J. Chem., vol. 45B, pp. 252-257, Jan. 2006. http://hdl.handle.net/123456789/6188.
  8. A. Chambel, C. Viegas, I. Sá-Correia, “Effect of cinnamic acid on the growth and on plasma membrane 1H-ATPase activity Saccharomyces cerevisiae”, Inter. J. Food Microbiol., vol. 50, no. 3, pp. 173-179, Sep. 1999. https://doi.org/10.1016/S0168-1605(99)00100-2. DOI: https://doi.org/10.1016/S0168-1605(99)00100-2
  9. S. Adisakwattana, K. Sookkongwaree, S. Roengsumran, A. Petsom, N. Ngamrojnavanich, W. Chavasiri, D. Deesamer, S. Yibchok, “Structure–activity relationships of trans-cinnamic acid derivatives on a-glucosidase inhibition”, Bioorg. Med. Chem. Lett., vol. 14, no. 11, pp. 2893–2896, Jun. 2004. https://doi.org/10.1016/j.bmcl.2004.03.037. DOI: https://doi.org/10.1016/j.bmcl.2004.03.037
  10. S. Carvalho, E. Silva, M. Souza, M. Lourenc¸ F. Vicenteb, “Synthesis and antimycobacterial evaluation of new trans-cinnamic acid hydrazide derivatives”, Bioorg. Med. Chem. Lett., vol. 18, no. 2, pp. 538–541, Jan. 2008. https://doi.org/10.1016/j.bmcl.2007.11.091. DOI: https://doi.org/10.1016/j.bmcl.2007.11.091
  11. F. Bisogno, L. Mascoti, C. Sanchez, F. Garibotto, F. Giannini, M. Kurina-Sanz, R. Enriz, “Structure-antifungal activity relationship of cinnamic acid derivatives”, J. Agr. Food Chem., vol. 55, no. 26, pp. 10635–10640, Nov. 2007. http://pubs.acs.org/doi/abs/10.1021/jf0729098. DOI: https://doi.org/10.1021/jf0729098
  12. A. Aragon-Muriel, D. Polo-Cerón, “Synthesis, characterization, thermal behavior, and antifungal activity of La(III) complexes with cinnamates and 4-methoxyphenylacetate”, J. Rare Earths, vol. 31, no. 11, pp. 1106-1113, Nov. 2013. https://doi.org/10.1016/S1002-0721(12)60412-8. DOI: https://doi.org/10.1016/S1002-0721(12)60412-8
  13. E. M. Martin Del Valle, “Cyclodextrins and their uses: a review”. Process Biochem., vol. 39, no. 9, pp. 1033–1046, May 2004. https://doi.org/10.1016/S0032-9592(03)00258-9. DOI: https://doi.org/10.1016/S0032-9592(03)00258-9
  14. E. Santos, J. Kamimura, L. Hill, C. Gomes, “Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications”, Food Sci. Technol., vol. 60, no. 1, pp. 583-592, Jan. 2015. https://doi.org/10.1016/j.lwt.2014.08.046. DOI: https://doi.org/10.1016/j.lwt.2014.08.046
  15. K. Uekama, F. Hirayama, T. Irie, “Cyclodextrin Drug Carrier Systems”, Chem. Rev., vol. 98, no. 5, pp. 2045-2076, Jul. 1998. http://pubs.acs.org/doi/abs/10.1021/cr970025p. DOI: https://doi.org/10.1021/cr970025p
  16. C. Demicheli, R. Ochoa, J. Da Silva, C. Falcao, B. Rossi-Bergmann, A. De Melo, R. Sinisterra, F. Frézard, “Oral Delivery of Meglumine Antimoniate-β-Cyclodextrin Complex for Treatment of Leishmaniasis”, Antimicrob. Agents Chemother., vol. 48, no. 1, pp. 100-103, Jan. 2004. https://dx.doi.org/10.1128%2FAAC.48.1.100-103.2004. DOI: https://doi.org/10.1128/AAC.48.1.100-103.2004
  17. G. Deacon, M. Forsyth, P. Junk, S. Leary, W. Lee, “Synthesis and characterisation of rare earth complexes supported by para-substituted cinnamate ligands”, Z. Anorg. Allg. Chem., vol. 635, no. 6-7, pp. 833-839, May 2009. http://dx.doi.org/10.1002/zaac.200801379. DOI: https://doi.org/10.1002/zaac.200801379
  18. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacterial Isolated from Animals, CLSI M31-A3. 3 ed., 2008.
  19. G. Deacon, F. Huber, R. Phillips, “Diagnosis of the nature of carboxylate coordination from the direction of shifts of carbón-oxygen stretching frequencies”, Inorg. Chim. Acta., vol. 104, no. 1, pp. 41-45, Oct. 1985. https://doi.org/10.1016/S0020-1693(00)83783-4. DOI: https://doi.org/10.1016/S0020-1693(00)83783-4
  20. A. Aragón-Muriel, M. Camprubi, E. Gonzalez, A. Salinas, A. Rodriguez, S. Gomez, D. Polo-Cerón, “Dual investigation of lanthanide complexes with cinnamate and phenylacetate ligands: study of the cytotoxic properties and the catalytic oxidation of styrene”, Polyhedron, vol. 80, pp. 117–128, Sep. 2014. https://doi.org/10.1016/j.poly.2014.02.040. DOI: https://doi.org/10.1016/j.poly.2014.02.040
  21. N. Roik, L. Belyakova, “Infrared spectroscopy, x-ray diffraction and thermal analysis studies of solid b-cyclodextrin - para-aminobenzoic acid inclusion complex”, PCSS, vol. 12, no. 1, pp. 168-173, 2011. http://www.pu.if.ua/inst/phys_che/start/pcss/vol12/1201-26.pdf
  22. A. Kokkinou, S. Makedonopoulou, D. Mentzafos, “The cristal structure of the 1:1 complex of β-cyclodextrin with trans-cinnamic acid”, Carbohydr. Res., vol. 328, no. 2, pp. 135-140, Sep. 2000. https://doi.org/10.1016/S0008-6215(00)00091-4. DOI: https://doi.org/10.1016/S0008-6215(00)00091-4
  23. H. Schneider, F. Hacket, V. Rüdiger, I. Ikeda, “NMR studies of cyclodextrins and cyclodextrin complexes”, Chem. Rev., vol. 98, no. 5, pp. 1755-1786, Jul. 1998. http://pubs.acs.org/doi/abs/10.1021/cr970019t. DOI: https://doi.org/10.1021/cr970019t
  24. F. Giordano, C. Novak, J. Moyano, “Thermal analysis of cyclodextrins and their inclusion compounds”, Thermochim. Acta, vol. 380, no. 2, pp. 123-151, Dec. 2001. https://doi.org/10.1016/S0040-6031(01)00665-7. DOI: https://doi.org/10.1016/S0040-6031(01)00665-7
  25. K. Chandrul, “Role of Macromolecules in Chromatography: Cyclodextrines”, J. Chem. Pharm. Res., vol. 3, no. 6, pp. 822-828, 2011. http://www.jocpr.com/articles/role-of-macromolecules-in-chromatography-cyclodextrines.pdf
  26. T. Pijpers, V. Mathot, B. Goderis, R. Scherrenberg, E. Van der Vegte, “High-Speed Calorimetry for the Study of the Kinetics of (De)vitrification, Crystallization, and Melting of Macromolecules”, Macromolecules, vol. 35, no. 9, pp. 3601-3613, Mar. 2002. http://pubs.acs.org/doi/abs/10.1021/ma011122u?journalCode=mamobx. DOI: https://doi.org/10.1021/ma011122u
  27. R. Abu-Eittah, M. Khedr, M. Goma, W. Zordok, “The structure of cinnamic acid and cinnamoyl azides, a unique localized p system: the electronic spectra and DFT-treatment”, Int. J. Quantum. Chem., vol. 112, no. 5, pp. 1256-1272, Mar. 2012. http://dx.doi.org/10.1002/qua.23120. DOI: https://doi.org/10.1002/qua.23120
  28. A. Essawy, M. Afifi, H. Moustafa, S. El-Medani, “DFT calculations, spectroscopic, thermal analysis and biological activity of Sm(III) and Tb(III) complexes with 2-aminobenzoic and 2-amino-5-chloro-benzoic acids”, Spectrochim. Acta A., vol. 131, pp. 388-397, Oct. 2014. https://doi.org/10.1016/j.saa.2014.04.134. DOI: https://doi.org/10.1016/j.saa.2014.04.134
  29. T. Abbs, A. Pearl, B. Rosy, “Synthesis, characterization, cytotoxicity, DNA cleavage and antimicrobial activity of homodinuclear lanthanide complexes of phenylthioacetic acid”, J. Rare Earths, vol. 31, no. 10, pp. 1009-1016. Oct. 2013. https://doi.org/10.1016/S1002-0721(13)60022-8. DOI: https://doi.org/10.1016/S1002-0721(13)60022-8
  30. J. Calvo, L. Martínez-Martínez, “Mecanismo de acción de los antimicrobianos”, Enferm. Infecc. Microbiol. Clin., vol. 27, no. 1, pp. 44–52, Jan. 2009. http://dx.doi.org/10.1016/j.eimc.2008.11.001. DOI: https://doi.org/10.1016/j.eimc.2008.11.001
  31. A. Deredjian, C. Colinon, S. Brothier, S. Favre-Bonte, B. Cournoyer, S. Nazaret, “Antibiotic and metal resistance among hospital and outdoor strains of Pseudomonas aeruginosa”, Res. Microbiol., vol. 162, no. 7, pp. 689-700, Sep. 2011. https://doi.org/10.1016/j.resmic.2011.06.007. DOI: https://doi.org/10.1016/j.resmic.2011.06.007
  32. K. Suntharalingam, O. Mendoza, A. Duarte, D. Mann, R. Vilar, “A platinum complex that binds non-covalently to DNA and induces cell death via a different mechanism than cisplatin”, Metallomics., vol. 5, pp. 514-523, Feb. 2013. https://doi.org/10.1039/C3MT20252F. DOI: https://doi.org/10.1039/c3mt20252f
  33. Y. Sun, F. Dong, D. Wang, Y. Lib, “Crystal Structure, Supramolecular Self-Assembly and Interaction with DNA of a Mixed Ligand Manganese(II) Complex”, J. Braz. Chem. Soc., vol. 22, no. 6, pp. 1089-1095, Jun. 2011. http://dx.doi.org/10.1590/S0103-50532011000600013. DOI: https://doi.org/10.1590/S0103-50532011000600013
  34. N. Sohrabi, “Binding and uv/vis spectral investigation of interaction of ni(ii) piroxicam complex with calf thymus deoxyribonucleic acid (Ct-DNA): a thermodynamic approach”, J. Pharm. Sci. & Res., vol. 7, no. 8, pp. 533-537, Aug. 2015. http://www.jpsr.pharmainfo.in/Documents/Volumes/vol7Issue08/jpsr07081507.pdf
  35. A. Jamali, A. Tavakoli, J. Nazhad, “Analytical overview of DNA interaction with Morin and its metal complexes”, Eur. Food Res. Technol., vol. 235, no. 3, pp. 367–373, Sep. 2012. https://doi.org/10.1007/s00217-012-1778-8. DOI: https://doi.org/10.1007/s00217-012-1778-8
  36. A. Sigel, H. Sigel, R. Sigel, Interplay between metal ions and nucleic acids. New York: Springer, 2012. DOI: https://doi.org/10.1007/978-94-007-2172-2
  37. A. Kresel, J. Lisowski, “Enantioselective cleavage of supercoiled plasmid DNA catalyzed by chiral macrocyclic lanthanide(III) complexes”, J. Inorg. Biochem., vol. 107, no. 1, pp. 1–5, Feb. 2012. https://doi.org/10.1016/j.jinorgbio.2011.10.011. DOI: https://doi.org/10.1016/j.jinorgbio.2011.10.011
  38. M. Komiyama, N. Takeda, H. Shigekawa, “Hydrolysis of DNA and RNA by lanthanide ions: mechanistic studies leading to new applications”, Chem. Commun., vol. 16, pp. 1443–1451, 1999. https://doi.org/10.1039/A901621J. DOI: https://doi.org/10.1039/a901621j
  39. S. Tabassum, G. Sharma, F. Arjmand, “New modulated design and synthesis of chiral CuII/SnIV bimetallic potential anticancer drug entity: In vitro DNA binding and pBR322 DNA cleavage activity”, Spectrochim. Acta Part A., vol. 90, pp. 208-217, May 2012. https://doi.org/10.1016/j.saa.2012.01.020. DOI: https://doi.org/10.1016/j.saa.2012.01.020

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 5 6 7 > >> 

También puede {advancedSearchLink} para este artículo.