SÍNTESIS, ACTIVIDAD ANTIBACTERIANA E INTERACCIÓN DEL ADN CON COMPLEJOS DE INCLUSIÓN ENTRE COMPUESTOS LANTÁNIDOS Y β-CICLODEXTRINA

Dorian Polo Cerón



Resumen


En este trabajo se han sintetizado complejos de lantánidos a partir de los derivados cloruros de La(III), Ce(III), Sm (III) e Yb(III) con ligandos cinamato, presentando coordinación bidentada entre el grupo carboxilo del ligando y el metal lantánido. Estos compuestos se utilizaron como huéspedes de la β-ciclodextrina con el fin de obtener complejos de inclusión mediante el método de co-precipitación, utilizando N,N-dimetilformamida como disolvente. Los productos de inclusión obtenidos fueron caracterizados mediante espectroscopia IR-ATR, Raman, UV-vis, RMN 1H, RMN 13C, DRX, TGA-DSC, análisis elemental y complexometría con EDTA. Se realizaron pruebas de actividad antibacteriana empleando 6 cepas ATTC (S. aureus ATCC 25923, S. aureus ATCC 29213, E. coli ATCC 25922, P. aeruginosa ATCC 27853, S. Typhimurium ATCC 14028 y K. pneumoniae ATCC BAA-2146) mediante el método de microdilución con caldo Mueller-Hinton; los resultados de actividad biológica para los complejos lantánidos permitieron evidenciar el efecto sinérgico entre el catión lantánido y el ligando cinamato. Igualmente, para los complejos de inclusión se observó una disminución de la concentración mínima inhibitoria (CMI) respecto a los complejos lantánidos iniciales. Los resultados obtenidos con el ADN de timo de ternera y el ADN plasmídico pBR322 permiten proponer una interacción electrostática entre los complejos evaluados y la estructura molecular del ADN.


Palabras clave


actividad antibacteriana, complejos de inclusión, complejos lantánidos, interacción con ADN

Referencias


G. Wright, “Solving the antibiotics crisis”, ACS Infect. Dis., vol. 1, no. 2, pp. 80-84, Jan. 2015. http://pubs.acs.org/doi/abs/10.1021/id500052s.

R. Hamidpour, M. Hamidpour, S. Hamidpour, M. Shahlari, “Cinnamon from the selection of traditional applications to its novel effects on the inhibition of angiogenesis in cancer cells and prevention of Alzheimer's disease, and a series of functions such as antioxidant, anticholesterol, antidiabetes, antibacterial, antifungal, nematicidal, acaracidal, and repellent activities”, J. Tradit. Complement. Med., vol. 5, no. 2, pp. 66-70, Apr. 2015. https://doi.org/10.1016/j.jtcme.2014.11.008.

Y. Zhang, X. Liu, Y. Wang, P. Jiang, S. Y. Queck, “Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus”, Food Control, vol. 59, pp. 282-289, Jan. 2016. https://doi.org/10.1016/j.foodcont.2015.05.032.

C. Letizia, J. Cocchiara, A. Lapczynski, J. Lalko, A. Api, “Fragrance material review on cinnamic acid”, Food Chem. Toxicol., vol. 43, no. 6, pp. 925-943, Jun. 2005. https://doi.org/10.1016/j.fct.2004.09.015.

B. Narasimhan, D. Belsare, D. Pharande, V. Mourya, A. Dhake, “Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations”, Eur. J. Med. Chem., vol. 39, no. 10, pp. 827-834. Oct. 2004. https://doi.org/10.1016/j.ejmech.2004.06.013.

P. Sharma, “Cinnamic acid derivatives: A new chapter of various pharmacological activities”. J. Chem. Pharm. Res., vol. 3, no. 2, pp. 403-423. Jan. 2011. http://www.jocpr.com/abstract/cinnamic-acid-derivatives-a-new-chapter-of-various-pharmacological-activities-712.html.

S. Venkateswarlu, M. Ramachandra, A. Krishnaraju, G. Trimurtulu, G. Subbaraju, “Antioxidant and antimicrobial activity evaluation of polyhydroxycinnamic acid ester derivatives”, Indian J. Chem., vol. 45B, pp. 252-257, Jan. 2006. http://hdl.handle.net/123456789/6188.

A. Chambel, C. Viegas, I. Sá-Correia, “Effect of cinnamic acid on the growth and on plasma membrane 1H-ATPase activity Saccharomyces cerevisiae”, Inter. J. Food Microbiol., vol. 50, no. 3, pp. 173-179, Sep. 1999. https://doi.org/10.1016/S0168-1605(99)00100-2.

S. Adisakwattana, K. Sookkongwaree, S. Roengsumran, A. Petsom, N. Ngamrojnavanich, W. Chavasiri, D. Deesamer, S. Yibchok, “Structure–activity relationships of trans-cinnamic acid derivatives on a-glucosidase inhibition”, Bioorg. Med. Chem. Lett., vol. 14, no. 11, pp. 2893–2896, Jun. 2004. https://doi.org/10.1016/j.bmcl.2004.03.037.

S. Carvalho, E. Silva, M. Souza, M. Lourenc¸ F. Vicenteb, “Synthesis and antimycobacterial evaluation of new trans-cinnamic acid hydrazide derivatives”, Bioorg. Med. Chem. Lett., vol. 18, no. 2, pp. 538–541, Jan. 2008. https://doi.org/10.1016/j.bmcl.2007.11.091.

F. Bisogno, L. Mascoti, C. Sanchez, F. Garibotto, F. Giannini, M. Kurina-Sanz, R. Enriz, “Structure-antifungal activity relationship of cinnamic acid derivatives”, J. Agr. Food Chem., vol. 55, no. 26, pp. 10635–10640, Nov. 2007. http://pubs.acs.org/doi/abs/10.1021/jf0729098.

A. Aragon-Muriel, D. Polo-Cerón, “Synthesis, characterization, thermal behavior, and antifungal activity of La(III) complexes with cinnamates and 4-methoxyphenylacetate”, J. Rare Earths, vol. 31, no. 11, pp. 1106-1113, Nov. 2013. https://doi.org/10.1016/S1002-0721(12)60412-8.

E. M. Martin Del Valle, “Cyclodextrins and their uses: a review”. Process Biochem., vol. 39, no. 9, pp. 1033–1046, May 2004. https://doi.org/10.1016/S0032-9592(03)00258-9.

E. Santos, J. Kamimura, L. Hill, C. Gomes, “Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications”, Food Sci. Technol., vol. 60, no. 1, pp. 583-592, Jan. 2015. https://doi.org/10.1016/j.lwt.2014.08.046.

K. Uekama, F. Hirayama, T. Irie, “Cyclodextrin Drug Carrier Systems”, Chem. Rev., vol. 98, no. 5, pp. 2045-2076, Jul. 1998. http://pubs.acs.org/doi/abs/10.1021/cr970025p.

C. Demicheli, R. Ochoa, J. Da Silva, C. Falcao, B. Rossi-Bergmann, A. De Melo, R. Sinisterra, F. Frézard, “Oral Delivery of Meglumine Antimoniate-β-Cyclodextrin Complex for Treatment of Leishmaniasis”, Antimicrob. Agents Chemother., vol. 48, no. 1, pp. 100-103, Jan. 2004. https://dx.doi.org/10.1128%2FAAC.48.1.100-103.2004.

G. Deacon, M. Forsyth, P. Junk, S. Leary, W. Lee, “Synthesis and characterisation of rare earth complexes supported by para-substituted cinnamate ligands”, Z. Anorg. Allg. Chem., vol. 635, no. 6-7, pp. 833-839, May 2009. http://dx.doi.org/10.1002/zaac.200801379.

Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacterial Isolated from Animals, CLSI M31-A3. 3 ed., 2008.

G. Deacon, F. Huber, R. Phillips, “Diagnosis of the nature of carboxylate coordination from the direction of shifts of carbón-oxygen stretching frequencies”, Inorg. Chim. Acta., vol. 104, no. 1, pp. 41-45, Oct. 1985. https://doi.org/10.1016/S0020-1693(00)83783-4.

A. Aragón-Muriel, M. Camprubi, E. Gonzalez, A. Salinas, A. Rodriguez, S. Gomez, D. Polo-Cerón, “Dual investigation of lanthanide complexes with cinnamate and phenylacetate ligands: study of the cytotoxic properties and the catalytic oxidation of styrene”, Polyhedron, vol. 80, pp. 117–128, Sep. 2014. https://doi.org/10.1016/j.poly.2014.02.040.

N. Roik, L. Belyakova, “Infrared spectroscopy, x-ray diffraction and thermal analysis studies of solid b-cyclodextrin - para-aminobenzoic acid inclusion complex”, PCSS, vol. 12, no. 1, pp. 168-173, 2011. http://www.pu.if.ua/inst/phys_che/start/pcss/vol12/1201-26.pdf

A. Kokkinou, S. Makedonopoulou, D. Mentzafos, “The cristal structure of the 1:1 complex of β-cyclodextrin with trans-cinnamic acid”, Carbohydr. Res., vol. 328, no. 2, pp. 135-140, Sep. 2000. https://doi.org/10.1016/S0008-6215(00)00091-4.

H. Schneider, F. Hacket, V. Rüdiger, I. Ikeda, “NMR studies of cyclodextrins and cyclodextrin complexes”, Chem. Rev., vol. 98, no. 5, pp. 1755-1786, Jul. 1998. http://pubs.acs.org/doi/abs/10.1021/cr970019t.

F. Giordano, C. Novak, J. Moyano, “Thermal analysis of cyclodextrins and their inclusion compounds”, Thermochim. Acta, vol. 380, no. 2, pp. 123-151, Dec. 2001. https://doi.org/10.1016/S0040-6031(01)00665-7.

K. Chandrul, “Role of Macromolecules in Chromatography: Cyclodextrines”, J. Chem. Pharm. Res., vol. 3, no. 6, pp. 822-828, 2011. http://www.jocpr.com/articles/role-of-macromolecules-in-chromatography-cyclodextrines.pdf

T. Pijpers, V. Mathot, B. Goderis, R. Scherrenberg, E. Van der Vegte, “High-Speed Calorimetry for the Study of the Kinetics of (De)vitrification, Crystallization, and Melting of Macromolecules”, Macromolecules, vol. 35, no. 9, pp. 3601-3613, Mar. 2002. http://pubs.acs.org/doi/abs/10.1021/ma011122u?journalCode=mamobx.

R. Abu-Eittah, M. Khedr, M. Goma, W. Zordok, “The structure of cinnamic acid and cinnamoyl azides, a unique localized p system: the electronic spectra and DFT-treatment”, Int. J. Quantum. Chem., vol. 112, no. 5, pp. 1256-1272, Mar. 2012. http://dx.doi.org/10.1002/qua.23120.

A. Essawy, M. Afifi, H. Moustafa, S. El-Medani, “DFT calculations, spectroscopic, thermal analysis and biological activity of Sm(III) and Tb(III) complexes with 2-aminobenzoic and 2-amino-5-chloro-benzoic acids”, Spectrochim. Acta A., vol. 131, pp. 388-397, Oct. 2014. https://doi.org/10.1016/j.saa.2014.04.134.

T. Abbs, A. Pearl, B. Rosy, “Synthesis, characterization, cytotoxicity, DNA cleavage and antimicrobial activity of homodinuclear lanthanide complexes of phenylthioacetic acid”, J. Rare Earths, vol. 31, no. 10, pp. 1009-1016. Oct. 2013. https://doi.org/10.1016/S1002-0721(13)60022-8.

J. Calvo, L. Martínez-Martínez, “Mecanismo de acción de los antimicrobianos”, Enferm. Infecc. Microbiol. Clin., vol. 27, no. 1, pp. 44–52, Jan. 2009. http://dx.doi.org/10.1016/j.eimc.2008.11.001.

A. Deredjian, C. Colinon, S. Brothier, S. Favre-Bonte, B. Cournoyer, S. Nazaret, “Antibiotic and metal resistance among hospital and outdoor strains of Pseudomonas aeruginosa”, Res. Microbiol., vol. 162, no. 7, pp. 689-700, Sep. 2011. https://doi.org/10.1016/j.resmic.2011.06.007.

K. Suntharalingam, O. Mendoza, A. Duarte, D. Mann, R. Vilar, “A platinum complex that binds non-covalently to DNA and induces cell death via a different mechanism than cisplatin”, Metallomics., vol. 5, pp. 514-523, Feb. 2013. https://doi.org/10.1039/C3MT20252F.

Y. Sun, F. Dong, D. Wang, Y. Lib, “Crystal Structure, Supramolecular Self-Assembly and Interaction with DNA of a Mixed Ligand Manganese(II) Complex”, J. Braz. Chem. Soc., vol. 22, no. 6, pp. 1089-1095, Jun. 2011. http://dx.doi.org/10.1590/S0103-50532011000600013.

N. Sohrabi, “Binding and uv/vis spectral investigation of interaction of ni(ii) piroxicam complex with calf thymus deoxyribonucleic acid (Ct-DNA): a thermodynamic approach”, J. Pharm. Sci. & Res., vol. 7, no. 8, pp. 533-537, Aug. 2015. http://www.jpsr.pharmainfo.in/Documents/Volumes/vol7Issue08/jpsr07081507.pdf

A. Jamali, A. Tavakoli, J. Nazhad, “Analytical overview of DNA interaction with Morin and its metal complexes”, Eur. Food Res. Technol., vol. 235, no. 3, pp. 367–373, Sep. 2012. https://doi.org/10.1007/s00217-012-1778-8.

A. Sigel, H. Sigel, R. Sigel, Interplay between metal ions and nucleic acids. New York: Springer, 2012.

A. Kresel, J. Lisowski, “Enantioselective cleavage of supercoiled plasmid DNA catalyzed by chiral macrocyclic lanthanide(III) complexes”, J. Inorg. Biochem., vol. 107, no. 1, pp. 1–5, Feb. 2012. https://doi.org/10.1016/j.jinorgbio.2011.10.011.

M. Komiyama, N. Takeda, H. Shigekawa, “Hydrolysis of DNA and RNA by lanthanide ions: mechanistic studies leading to new applications”, Chem. Commun., vol. 16, pp. 1443–1451, 1999. https://doi.org/10.1039/A901621J.

S. Tabassum, G. Sharma, F. Arjmand, “New modulated design and synthesis of chiral CuII/SnIV bimetallic potential anticancer drug entity: In vitro DNA binding and pBR322 DNA cleavage activity”, Spectrochim. Acta Part A., vol. 90, pp. 208-217, May 2012. https://doi.org/10.1016/j.saa.2012.01.020.


Métricas de artículo

Vistas de resumen
40




Cargando métricas ...
_

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2018 CIENCIA EN DESARROLLO

Licencia de Creative Commons

This work is licensed under a Creative Commons Attribution 4.0 International

 

UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA 
Sede Central Tunja–Boyacá–Colombia 
Avenida Central del Norte 39-115 
PBX: (57+8) 7405626 
portalweb@uptc.edu.co Comentarios de este sitio 
Horario de atención y servicio telefónico 
Lunes a viernes de 8:00 a.m. a 12:00 m y 2:00 p.m a 6:00 p.m.  

UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
Sede Central Tunja–Boyacá–Colombia
Avenida Central del Norte 39-115
PBX: (57+8) 7405626
portalweb@uptc.edu.co Comentarios de este sitio
Horario de atención y servicio telefónico
8:00 a.m. a 12:00 m y 2:00 p.m a 6:00 p.m.

Atención al Ciudadano
Línea Gratuita: 01 8000 942024
Tel: (57+8) 7428263
quejas.reclamos@uptc.edu.co
Notificaciones Judiciales
Notificaciones de aviso

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional
Sistema OJS - Metabiblioteca |