Skip to main navigation menu Skip to main content Skip to site footer

Time study of Earth’s magnetic field in Colombia: Fúquene Geomagnetic Observatory

Abstract

In this article the behavior over time of the Earth’s magnetic field in the municipality of Fúquene, Colombia is determined. From the historical series of magnetic field measurements over the Earth’s surface provided by the Fúquene geomagnetic observatory, which contains the historical record of 60 years of hourly measurements of the terrestrial magnetic field components, a regression analysis of the terrestrial magnetic field components as a function of time was performed. Two methods were used to remove outliers that complemented each other, the Z_score method and the Hampel filter. In the analized period since 1955 to 2015, the intensity of the terrestrial magnetic field has decreased by 14%, with a projected variation of more than 25% for the year 2055. The magnetic field intensity change rate 0.08675 [μT/year] was calculated and compared with the information reported by NOAA (National Oceanica and Atmospheric Administration) finding an excellent agreement. Besides, the ocurrence of geomagnetic storms in the data was determined, from the gradients of the horizontal component of the magnetic field during the main solar events that occurred in the study period. According to the historical behavior of the terrestrial magnetic field components, in the future we expect that the decreasing of Earth’s magnetic Field continues, which would imply a higher threat to the effects of space weather in the country, such as the generation of GICs (Geomagnetically Induced Currents) in the Colombian electricity system.

Keywords

Earth’s magnetic field, Geomagnetically Induced Currents, Regression, space weather

PDF (Español)

References

  1. J. J. V. Santamaría, “La historia del campo magnético terrestre registrada en las rocas. fundamentos del paleo- magnetismo,” Enseñanza de las Ciencias de la Tierra, vol. 24, no. 3, pp. 261–261, 2016.
  2. C. Kloss, C. C. Finlay, and N. Olsen, “Co-estimating geomagnetic field and calibration parameters: modeling earth s magnetic field with platform magnetometer data,” Earth, Planets and Space, vol. 73, no. 1, pp. 1–21, 2021. DOI: https://doi.org/10.1186/s40623-020-01351-7
  3. C. J. Davies and C. G. Constable, “Rapid geomagnetic changes inferred from earth observations and numerical simulations,” Nature communications, vol. 11, no. 1, pp. 1– 10, 2020. DOI: https://doi.org/10.1038/s41467-020-16888-0
  4. M.Brown,M.Korte,R.Holme,I.Wardinski,andS.Gunnarson, “Earth s magnetic field is probably not reversing,”
  5. Proceedings of the National Academy of Sciences, vol. 115,no. 20, pp. 5111–5116, 2018. DOI: https://doi.org/10.1073/pnas.1722110115
  6. A.Witze,“Earthsmagneticfieldisactingupandgeolo- gists don’t know why,” Nature, vol. 565, no. 7738, pp. 143– 145, 2019. DOI: https://doi.org/10.1038/d41586-019-00007-1
  7. M. Mandea and A. Chambodut, “Geomagnetic field pro- cesses and their implications for space weather,” Surveys in Geophysics, vol. 41, no. 6, pp. 1611–1627, 2020. DOI: https://doi.org/10.1007/s10712-020-09598-1
  8. V.FeldmanandL.SanchezBettucci,“Relaciónentretormentas geomagnéticas e incidencias en la red eléctrica del uruguay,” Latinmag letters, vol. 3, pp. 1–9, 2013.
  9. E.J.Oughton,M.Hapgood,G.S.Richardson,C.D.Beg- gan, A. W. Thomson, M. Gibbs, C. Burnett, C. T. Gaunt, M. Trichas, R. Dada, et al., “A risk assessment framework for the socioeconomic impacts of electricity transmission infrastructure failure due to space weather: An application to the united kingdom,” Risk Analysis, vol. 39, no. 5, pp. 1022–1043, 2019. DOI: https://doi.org/10.1111/risa.13229
  10. V.J.Pierre,“Insightsintotheearthsmagneticfieldchan- ges,” Impact, pp. 35–37, 2006.
  11. R. Fan, Y. Liu, A. Umana, Z. Tan, L. Sun, and Y. An, “The impact of solar storms on protective relays for saturable- core transformers,” in 2017 IEEE Power & Energy Society General Meeting, pp. 1–5, IEEE, 2017. DOI: https://doi.org/10.1109/PESGM.2017.8274324
  12. C. Liu, Y. S. Ganebo, H. Wang, and X. Li, “Geomagne- tically induced currents in ethiopia power grid: calcula- tion and analysis,” IEEE Access, vol. 6, pp. 64649–64658, 2018. DOI: https://doi.org/10.1109/ACCESS.2018.2877618
  13. V.Belakhovsky,V.Pilipenko,Y.A.Sakharov,andV.Seli- vanov, “Characteristics of the variability of a geomagnetic field for studying the impact of the magnetic storms and substorms on electrical energy systems,” Izvestiya, Physics of the Solid Earth, vol. 54, no. 1, pp. 52–65, 2018. DOI: https://doi.org/10.1134/S1069351318010032
  14. T. Phillips, “Escudo solar - protegiendo la red eléctrica de américa del norte,” Nasa, 2010.
  15. A.P.Dubrov,“Elementsofthegeomagneticfield,”inThe Geomagnetic Field and Life: Geomagnetobiology, ch. 1.1, pp. 10–11, Springer Science+Business Media, 1978.
  16. A. R. Serway, “Campo magnético de la tierra,” in Físi- ca Para Ciencias e Ingeniería, ch. 30.7, pp. 855–866, McGRAW-HILL, 2000.
  17. M. Calcina, “Un modelo dinámico para el campo geo- magnético,” Revista Boliviana de Física, vol. 15, no. 15, pp. 44–62, 2009.
  18. M. Rother, M. Korte, A. Morschhauser, F. Vervelidou, J. Matzka, and C. Stolle, “The mag. num core field model as a parent for igrf-13, and the recent evolution of the south atlantic anomaly,” Earth, Planets and Space, vol. 73, no. 1, pp. 1–17, 2021. DOI: https://doi.org/10.1186/s40623-020-01277-0
  19. “Geoportal.”https://www.igac.gov.co/es/contenido/areas- estrategicas/geomagnetismo, 2020.
  20. “Math works centro de ayuda.” https://la.mathworks.com/help/curvefit/least-squares- fitting.html, 2020.
  21. C. M. Salgado, C. Azevedo, H. Proença, and S. M. Vieira, “Noise versus outliers,” Secondary Analysis of Electronic Health Records, pp. 163–183, 2016. DOI: https://doi.org/10.1007/978-3-319-43742-2_14
  22. V.Aggarwal,V.Gupta,P.Singh,K.Sharma,andN.Shar- ma, “Detection of spatial outlier by using improved z- score test,” in 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 788– 790, IEEE, 2019. DOI: https://doi.org/10.1109/ICOEI.2019.8862582
  23. H.Liu,S.Shah,andW.Jiang,“On-lineoutlierdetection and data cleaning,” Computers & chemical engineering, vol. 28, no. 9, pp. 1635–1647, 2004. DOI: https://doi.org/10.1016/j.compchemeng.2004.01.009
  24. M. H. Sarachaga, G. R. Caderot, M. R. Bouza, I. R. Bil- bao, F. S. Dulcet, B. M. Monge, I. B. Cid, B. A. D. L. M. CARRETERO, and J. E. Menéndez, “Estudio de las tor- mentas geomagnéticas y evaluación de su impacto en el ámbito de las tecnologías e infraestructuras en españa y portugal,” Riesgos naturales seguridad y medio ambiente (133), 2014.
  25. G. Hervé, J. Faβbinder, S. A. Gilder, C. Metzner- Nebelsick, Y. Gallet, A. Genevey, E. Schnepp, L. Geis- weid, A. Pütz, S. Reuβ, et al., “Fast geomagnetic field intensity variations between 1400 and 400 bce: New ar- chaeointensity data from germany,” Physics of the Earth and planetary Interiors, vol. 270, pp. 143–156, 2017. DOI: https://doi.org/10.1016/j.pepi.2017.07.002
  26. W.Poletti,“Theearth’smagneticfieldofthelastcenturies from the perspective of the jequitinhonha and mucuri river valleys: A natural observatory of the south atlantic ano- maly in brazil,” Journal of South American Earth Sciences, p. 102984, 2020. DOI: https://doi.org/10.1016/j.jsames.2020.102984
  27. L. D. Guarnizo Muñoz, W. M. Avendaño Hernández, et al., “Modelos del campo geomagnético en colombia del año 1968 al año 1993,” 2020.

Downloads

Download data is not yet available.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.