Skip to main navigation menu Skip to main content Skip to site footer

Review. Applications of whey and its proteins derivatives

Abstract

Abstract

Whey was discovered about 3,000 years ago as a by-product of the dairy industry (mainly cheese) and for years it was considered a liquid waste, used as animal feed or simply dumped into rivers. However, today the use of whey allows it to be recognized as a nutritional ingredient with high added value applied to many food products. Within its composition we find: lactose, fat, proteins of important biological value, minerals and vitamins; whey proteins constitute an economic source with multiple techno-functional, nutraceutical and nutritional properties, useful to add to a wide range of foods, multiplying development possibilities for the dairy industry itself. Taking into account the above, throughout this review relevant aspects of this dairy by-product will be described, emphasizing the proteins that make it up and their derivatives (concentrated and hydrolyzed), as well as the molecular, physicochemical and functional properties, aspects that they position it as a striking raw material at an industrial level in addition to the benefits it imparts to the health of the consumer. 

Keywords

Whey protein concentrates, protein derivatives, whey protein hydrolysates, functional properties.

PDF (Español)

References

  1. N. Auestad and D. K. Layman, “Dairy bioactive proteins and peptides: A narrative review,” Nutr. Rev., vol. 79, pp. 36–47, 2021, doi: 10.1093/nutrit/nuab097.
  2. A. R. Madureira, C. I. Pereira, A. M. P. Gomes, M. E. Pintado, and F. Xavier Malcata, “Bovine whey proteins - Overview on their main biological properties,” Food Res. Int., vol. 40, no. 10, pp. 1197–1211, 2007, doi: 10.1016/j.foodres.2007.07.005.
  3. K. Marshall, “Therapeutic Applications of Whey Protein,” J. Clin. Ther., vol. 9, no. 2, 2004.
  4. T. Zotta, L. Solieri, L. Iacumin, C. Picozzi, and M. Gullo, “Valorization of cheese whey using microbial fermentations,” Appl. Microbiol. Biotechnol., vol. 104, no. 7, pp. 2749–2764, 2020, doi: 10.1007/s00253-020-10408-2.
  5. A. León-López et al., “Milk Whey Hydrolysates as High Value-Added Natural Polymers: Functional Properties and Applications,” Polymers (Basel)., vol. 14, no. 6, 2022, doi: 10.3390/polym14061258.
  6. G. W. Smithers, “Whey and whey proteins-From ‘gutter-to-gold,’” Int. Dairy J., vol. 18, no. 7, pp. 695–704, 2008, doi: 10.1016/j.idairyj.2008.03.008.
  7. A. Plata, S. Ramírez, C. Elías, and R. Luna, “Valor agregado para el lacto suero de caprino proveniente de agroindustrias lácteas : ácido láctico como alternativa de descontaminación,” scielo, vol. 11, pp. 33–39, 2013, [Online]. Available: http://www.scielo.org.co/pdf/nova/v11n19/v11n19a03.pdf.
  8. R. A. Parra Huertas, “Lactosuero: importancia en la industria de alimentos.,” Rev. Fac. Nac. Agron. Medellín, vol. 62, no. 1, pp. 4967–4982, 2009, doi: 10.1016/j.ijfoodmicro.2010.04.011.
  9. J. M. Rocha and A. Guerra, “On the valorization of lactose and its derivatives from cheese whey as a dairy industry by ‑ product : an overview,” Eur. Food Res. Technol., no. 0123456789, 2020, doi: 10.1007/s00217-020-03580-2.
  10. P. Guel García, J. L. Hernández Mendoza, and G. Rodríguez Castillejos, “USE OF BACTERIA OBTAINED FROM WHEY AND ITS POTENTIAL USE AS PROBIOTICS IN THE FOOD INDUSTRY . A SHORT REVIEW,” Rev. Boliv. Química, vol. 35, no. 1, pp. 40–45, 2018, [Online]. Available: http://www.scielo.org.bo/pdf/rbq/v35n1/v35n1_a05.pdf.
  11. S. M. Fitzsimons, D. M. Mulvihill, and E. R. Morris, “Denaturation and aggregation processes in thermal gelation of whey proteins resolved by differential scanning calorimetry,” Food Hydrocoll., vol. 21, no. 4, pp. 638–644, 2007, doi: 10.1016/j.foodhyd.2006.07.007.
  12. A. L. Kelly and C. M. Delahunty, “Sensory Characteristics and Related Volatile Flavor Compound Profiles of Different Types of Whey,” J. Dairy Sci., vol. 88, no. 8, pp. 2689–2699, 2005, doi: 10.3168/jds.S0022-0302(05)72947-7.
  13. S. R. Macwan, B. K. Dabhi, S. C. Parmar, and K. D. Aparnathi, “Whey and its Utilization,” Int. J. Curr. Microbiol. Appl. Sci., vol. 5, no. 8, pp. 134–155, 2016, doi: 10.20546/ijcmas.2016.508.016.
  14. K. Mangano, Y. Bao, and C. Zhao, “Nutritional properties of whey proteins,” Whey protein Prod. Chem. Funct. Appl., pp. 103–140, 2019.
  15. C. Zhao, N. Chen, and T. J. Ashaolu, “Whey proteins and peptides in health-promoting functions – A review,” Int. Dairy J., vol. 126, p. 105269, 2022, doi: 10.1016/j.idairyj.2021.105269.
  16. J. L. Brennan et al., “Differential responses of blood essential amino acid levels following ingestion of high-quality plant-based protein blends compared to whey protein—a double-blind randomized, cross-over, clinical trial,” Nutrients, vol. 11, no. 12, pp. 1–11, 2019, doi: 10.3390/nu11122987.
  17. D. Lozano, E. Molina, and R. Lopez, “Immunological and allergenic properties of whey proteins hydrolyzed under high hydrostatic pressure in a BALB/c model of milk allergy.,” Allergy, vol. 70, pp. 17–18, 2015.
  18. A. Ali Redha, H. Valizadenia, S. A. Siddiqui, and S. Maqsood, “A state-of-art review on camel milk proteins as an emerging source of bioactive peptides with diverse nutraceutical properties,” Food Chem., vol. 373, no. PA, p. 131444, 2022, doi: 10.1016/j.foodchem.2021.131444.
  19. L. Guevara, D. Cuartas, and F. LLano, “Kappa caseína de la leche: aspectos bioquímicos, moleculares, productivos y nutricionales,” Rev. Médica Risaralda, vol. 20, no. 1, pp. 20–23, 2014, doi: 10.22517/25395203.8531.
  20. H. Peralta, “Recuperacion de las proteinas del suero de leche utilizando quitosán,” Universidad Nacional Autónoma de México, 2018.
  21. C. V Morr and E. Y. W. Ha, “Whey protein concentrates and isolates : Processing and functional properties,” Crit. Rev. Food Sci. Nutr., no. September 2013, pp. 37–41, 2009, doi: 10.1080/10408399309527643.
  22. D. Karim-Yamul, “Propiedades de geles de concentrado de proteínas de lactosuero, miel y harina,” Universidad Nacional de la Plata, 2008.
  23. A. Thompson, M. Boland, and H. Singh, Milk Proteins: From Expression to Food, 1st ed. Lincoln: Elsevier, 2009.
  24. A. Kilara and M. N. Vaghela, Whey proteins. Woodhead Publishing Limited, 2004.
  25. M. Eugenia Lucena, S. Alvarez, C. Menéndez, F. A. Riera, and R. Alvarez, “α-Lactalbumin precipitation from commercial whey protein concentrates,” Sep. Purif. Technol., vol. 52, no. 3, pp. 446–453, 2007, doi: 10.1016/j.seppur.2006.05.024.
  26. H. Singh, M. Boland, and A. Thompson, Milk Proteins: From Expression to Food, 2nd ed. Palmerston North: Food Science and Technology International Series, 2015.
  27. M. Boland and N. Zealand, Whey proteins. Woodhead Publishing Limited, 2011.
  28. M. C. Candioti, “RESPUESTA DE LAS PROTEÍNAS DEL SUERO DE LA LECHE BOVINA A LA ACCIÓN DE DIVERSAS ENZIMAS PROTEOLÍTICAS DE USO INDUSTRIAL,” pp. 33–35, 1998.
  29. S. W. Chiang et al., “Whey protein supplementation improves postprandial glycemia in persons with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials,” Nutr. Res., vol. 104, no. 291, pp. 44–54, 2022, doi: 10.1016/j.nutres.2022.04.002.
  30. B. E. Meza, R. A. Verdini, and A. C. Rubiolo, “Food Hydrocolloids Viscoelastic behaviour of heat-treated whey protein concentrate suspensions,” Food Hydrocoll., vol. 23, no. 3, pp. 661–666, 2009, doi: 10.1016/j.foodhyd.2008.03.015.
  31. X. Shen, S. Shao, and M. Guo, “Ultrasound-induced changes in physical and functional properties of whey proteins,” Int. J. Food Sci. Technol., vol. 52, pp. 381–388, 2016, doi: 10.1111/ijfs.13292.
  32. M. A. de la Fuente, Y. Hemar, M. Tamehana, P. A. Munro, and H. Singh, “Process-induced changes in whey proteins during the manufacture of whey protein concentrates,” Int. Dairy J., vol. 12, no. 4, pp. 361–369, 2002, doi: 10.1016/S0958-6946(02)00031-6.
  33. C. Sun et al., “Reduction of particle size based on super fi ne grinding : Effects on structure , rheological and gelling properties of whey protein concentrate,” J. Food Eng., vol. 186, pp. 69–76, 2016, doi: 10.1016/j.jfoodeng.2016.03.002.
  34. A. Moro, C. Gatti, and N. Delorenzi, “Hydrophobicity of whey protein concentrates measured by fluorescence quenching and its relation with surface functional properties,” J. Agric. Food Chem., vol. 49, no. 10, pp. 4784–4789, 2001, doi: 10.1021/jf001132e.
  35. M. Warncke, I. Kieferle, T. M. Nguyen, and U. Kulozik, “Impact of heat treatment, casein/whey protein ratio and protein concentration on rheological properties of milk protein concentrates used for cheese production,” J. Food Eng., vol. 312, no. March 2021, p. 110745, 2022, doi: 10.1016/j.jfoodeng.2021.110745.
  36. K. Posada, D. M. Terán, and J. S. Ramírez-Navas, “Empleo de lactosuero y sus componentes en la elaboracion de postres y productos de confitería,” La Aliment. Latinoam., vol. 292, no. 1, pp. 66–76, 2011.
  37. Ó. L. Ramos et al., “Effect of composition of commercial whey protein preparations upon gelation at various pH values,” Food Res. Int., vol. 48, no. 2, pp. 681–689, 2012, doi: 10.1016/j.foodres.2012.06.004.
  38. G. Kresic, V. Lelas, Z. Herceg, and A. Rezek, “Effects of high pressure on functionality of whey protein concentrate and whey protein isolate,” EDP Sci., pp. 303–315, 2006, doi: 10.1051/lait:2006012.
  39. R. Ingrassia, P. Sobral, J. Wagner, and P. Risso, “EVALUACIÓN DE GELES ÁCIDOS DE AISLADOS PROTEICOS DE LACTOSUERO Y DE SOJA,” 1° Congr. Argentino Biorreología, vol. 1, 2012, [Online]. Available: http://rephip.unr.edu.ar/bitstream/handle/2133/10531/Ingrassia 2013 PR.pdf?sequence=4&isAllowed=y.
  40. M. Dissanayake and T. Vasiljevic, “Functional properties of whey proteins affected by heat treatment and hydrodynamic high-pressure shearing,” J. Dairy Sci., vol. 92, no. 4, pp. 1387–1397, 2009, doi: 10.3168/jds.2008-1791.
  41. D. H. G. Pelegrine and C. A. Gasparetto, “Whey proteins solubility as function of temperature and pH,” LWT - Food Sci. Technol., vol. 38, no. 1, pp. 77–80, 2005, doi: 10.1016/j.lwt.2004.03.013.
  42. C. Van Der Ven, H. Gruppen, D. B. A. De Bont, and A. G. J. Voragen, “Emulsion Properties of Casein and Whey Protein Hydrolysates and the Relation with Other Hydrolysate Characteristics,” J. Agric. Food Chem., pp. 5005–5012, 2001, doi: 10.1021/jf010144c.
  43. H. Bouaouina, A. Desrumaux, C. Loisel, and J. Legrand, “Functional properties of whey proteins as affected by dynamic high-pressure treatment,” Int. Dairy J., vol. 16, pp. 275–284, 2006, doi: 10.1016/j.idairyj.2005.05.004.
  44. T. M. Ho, B. R. Bhandari, and N. Bansal, “Functionality of bovine milk proteins and other factors in foaming properties of milk: a review,” Crit. Rev. Food Sci. Nutr., vol. 62, no. 17, pp. 4800–4820, 2022, doi: 10.1080/10408398.2021.1879002.
  45. R. Tsutsumi and Y. M. Tsutsumi, “Peptides and Proteins in Whey and Their Benefits for Human Health,” Austin J. Nutr. Food Sci., vol. 1, no. 1, 2014, [Online]. Available: https://www.essentialnutrition.com.br/media/artigos/hiwhey/4.pdf.
  46. B. S. Birsen and N. Akin, “Health Benefits of Whey Protein: A Review,” J. Food Sci. Eng., no. March, 2012, doi: 10.17265/2159-5828/2012.03.001.
  47. P. Rammer et al., “BAMLET Activates a Lysosomal Cell Death Program in Cancer Cells,” Mol. Cancer Ther., vol. 9, no. 1, pp. 24–33, 2010, doi: 10.1158/1535-7163.MCT-09-0559.
  48. B. Hernández-ledesma, M. Ramos, and J. Á. Gómez-ruiz, “Bioactive components of ovine and caprine cheese whey ଝ,” Small Rumin. Res., vol. 101, no. 1–3, pp. 196–204, 2011, doi: 10.1016/j.smallrumres.2011.09.040.
  49. M. Á. Mazorra-manzano and J. M. Moreno-hernández, “Propiedades y opciones para valorizar el lactosuero de la quesería artesanal.,” Biotecnol. y ciencias Agropecu., vol. 14, no. 1, pp. 133–144, 2019, doi: 10.29059/cienciauat.v14i1.1134.
  50. R. L. Walzem, C. J. Dillard, and J. B. German, “Whey Components : Millennia of Evolution Create Functionalities for Mammalian Nutrition : What We Know and What We May Be Overlooking,” Food Sci. Nutr., vol. 42, no. 4, pp. 37–41, 2010, doi: 10.1080/10408690290825574.
  51. E. Ha and M. B. Zemel, “Functional properties of whey , whey components , and essential amino acids : mechanisms underlying health benefits for active people ( Review ),” J. Nutr. Biochem., vol. 14, pp. 251–258, 2003, doi: 10.1016/S0955-2863(03)00030-5.
  52. J. E. Tang, D. R. Moore, G. W. Kujbida, M. A. Tarnopolsky, and S. M. Phillips, “Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men,” J. Appl. Physiol., vol. 107, no. 3, pp. 987–992, 2009, doi: 10.1152/japplphysiol.00076.2009.
  53. J. S. Volek et al., “Whey Protein Supplementation During Resistance Training Augments Lean Body Mass Training Augments Lean Body Mass,” J. Am. Collage Nutr., no. August, pp. 37–41, 2013, doi: 10.1080/07315724.2013.793580.
  54. M. C. Devries and S. M. Phillips, “Supplemental Protein in Support of Muscle Mass and Health : Advantage Whey,” vol. 80, 2015, doi: 10.1111/1750-3841.12802.
  55. R. Benítez, A. Ibarz, and J. Pagan, “Hidrolizados de proteína : procesos y aplicaciones Protein hydrolysates : processes and applications R esumen,” Acta Bioquim. Clin. Latinoam., vol. 42, no. 2, pp. 227–237, 2008, [Online]. Available: https://www.redalyc.org/pdf/535/53542208.pdf.
  56. A. Guadix, “Procesos tecnológicos y métodos de control en la hidrólisis de proteínas,” Ars Pharm., vol. 41, no. 1, pp. 79–89, 2000.
  57. R. Sinha, C. Radha, J. Prakash, and P. Kaul, “Whey protein hydrolysate: Functional properties, nutritional quality and utilization in beverage formulation,” Food Chem., vol. 101, no. 4, pp. 1484–1491, 2007, doi: 10.1016/j.foodchem.2006.04.021.
  58. M. Mohammadian and A. Madadlou, “Characterization of fibrillated antioxidant whey protein hydrolysate and comparison with fibrillated protein solution.,” Food Hydrocoll., vol. 52, pp. 221–230, 2015, doi: 10.1016/j.foodhyd.2015.06.022.
  59. A. Perea, U. Ugalde, I. Rodriguez, and J. L. Serra, “Preparation and characterization of whey protein hydrolysates: Applications in industrial whey bioconversion processes,” Enzyme Microb. Technol., vol. 15, no. 5, pp. 418–423, 1993, doi: 10.1016/0141-0229(93)90129-P.
  60. S. F. Gauthier and Y. Pouliot, “Functional and Biological Properties of Peptides Obtained By Enzymatic Hydrolysis of Whey Proteins,” J. Dairy Sci., vol. 86, no. SUPPL. 1, pp. E78–E87, 2003, doi: 10.3168/jds.S0022-0302(03)74041-7.
  61. J. León, “Métodos de ensayo utilizados en la determinación de amino nitrógeno libre (NFA) en materiales que cursan o están destinados a procesos de fermentación alcohólica,” Universidad Nacional Abierta y a Distancia – UNAD, 2021.
  62. K. E. Webb, “Intestinal absorption of protein hydrolysis products: a review’,” J. Anim. Sci., no. March, pp. 3011–3022, 2018, doi: Webb, K. E. (1990). Intestinal absorption of protein hydrolysis products: a review. Journal of Animal Science, 68(9), 3011. doi:10.2527/1990.6893011x.
  63. D. Spellman, G. O. Cuinn, and R. J. Fitzgerald, “Bitterness in Bacillus proteinase hydrolysates of whey proteins,” Food Chem., vol. 114, no. 2, pp. 440–446, 2009, doi: 10.1016/j.foodchem.2008.09.067.
  64. P. Leksrisompong, P. Gerard, K. Lopetcharat, and M. Drake, “Bitter Taste Inhibiting Agents for Whey Protein Hydrolysate and Whey Protein Hydrolysate Beverages,” J. Food Sci., vol. 77, no. 8, 2012, doi: 10.1111/j.1750-3841.2012.02800.x.
  65. S. Z. Bustamante, J. G. González, S. Sforza, and T. Tedeschi, “Bioactivity and peptide profile of whey protein hydrolysates obtained from Colombian double-cream cheese production and their products after gastrointestinal digestion,” Lwt, vol. 145, no. November 2020, 2021, doi: 10.1016/j.lwt.2021.111334.
  66. A. Landim, N. Matsubara, and J. E. da Silva-Santos, “Application of preliminary high-pressure processing for improving bioactive characteristics and reducing antigenicity of whey protein hydrolysates,” Food Sci. Technol. Int., 2021, doi: 10.1177/10820132211022106.
  67. P. A. Duarte-Manchego, J. C. González-Téllez, and C. J. Muvdi-Nova, “Evaluación de las proteínas hidrolizadas del lactosuero como fuente de nitrógeno en la fermentación láctica de la lactosa,” Rev. ION, vol. 32, no. 2, pp. 15–27, 2019, doi: 10.18273/revion.v32n2-2019002.
  68. T. . Ashaolu, “Antioxidative peptides derived from plants for human nutrition: their production, mechanisms and applications.,” Eur. Food Res. Technol., vol. 246, pp. 853–865, 2020.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.