Production Of A Protein Isolate From Boyacense Quinoa Flour (Chenopodium quinoa) By Combined Methods
Abstract
Quinoa is a pseudocereal known for its high content of plant protein. The aim of this study was to obtain a high-purity protein isolate using different extraction methodologies. Initial characterization of the quinoa flour on a dry basis (QF) showed protein content of 16% and starch content of 53%. Optimal pH values were determined through solubility curves, and extractions were performed using 0% and 1% NaCl solutions, resulting in a protein yield of 38%. Fractionated extraction was then used, increasing the protein yield to 42%. Finally, enzymatic hydrolysis of the starch, which acts as an interferent in protein extraction, was performed. The combined use of enzymatic hydrolysis and fractionated extraction resulted in a protein isolate with a high degree of purity (~55%). This study demonstrates that the combination of different extraction methodologies can significantly improve the yield and purity of the final product.
Keywords
α-amylase; protein isolate; fractional extraction; enzymatic hydrolysis; quinoa
References
- W. Rojas, G. Alandia, J. Irigoyen, J. Blajos, and T. Santivañez, “La Quinua: Cultivo milenario para contribuir a la seguridad alimentaria mundial,” 2011. doi: 10.1016/j.jaridenv.2009.03.010.
- A. Guerrero-López, “Impacto del cultivo de la quinua (Chenopodium quinoa Willd) como alternativa productiva y socioeconómica en la comunidad indígena Yanacona de La Vega, Cauca, Colombia,” 2018.
- Ministerio de agricultura y desarrollo rural, “En los últimos 4 años, la quinua ha tenido un crecimiento de más del 150% en áreas de producción,” 2018. https://www.minagricultura.gov.co/noticias/Paginas/En-los-últimos-4-años,-la-quinua-ha-tenido-un-crecimiento-de-más-del-150-en-áreas-de-producción-.aspx#:~:text=Se estima que el área,%2C Nariño%2C Boyacá y Cundinamarca.
- J. P. Rodríguez, H. Rahman, S. Thushar, and R. K. Singh, “Healthy and Resilient Cereals and Pseudo-Cereals for Marginal Agriculture: Molecular Advances for Improving Nutrient Bioavailability,” Front Genet, vol. 11, no. February, pp. 1–29, 2020, doi: 10.3389/fgene.2020.00049.
- L. C. A. RIVERA and A. K. H. HERNÁNDEZ, “CALIDAD Y GERMINACIÓN DE SEMILLAS DE QUINUA Chenopodium quinoa Willd. ALMACENADAS ARTESANALMENTE POR PRODUCTORES.,” UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES U.D.C.A, 2017. doi: 10.1038/132817a0.
- L. E. Abugoch James, Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties, 1st ed., vol. 58, no. 09. Elsevier Inc., 2009. doi: 10.1016/S1043-4526(09)58001-1.
- F. M. Montes, J. P. P. Vázquez, and H. R. Rosas, BIOQUÍMICA DE LAGUNA Y PIÑA. 2018.
- M. Amor Lluch, “Influencia de la germinación en la obtención de aislados proteicos de altramuz,” Sep. 2022, Accessed: Jul. 23, 2023. [Online]. Available: https://riunet.upv.es:443/handle/10251/186564
- C. A. Gamboa Hipolito and B. Llanos Caballero, “Métodos de extracción de proteína y sus aplicaciones en el mejoramiento nutricional de productos Agroindustriales,” Journal of Agro-industry Sciences, vol. 4, no. 3, pp. 133–140, Dec. 2022, doi: 10.17268/jais.2022.016.
- Z. Gao et al., “Effect of alkaline extraction pH on structure properties, solubility, and beany flavor of yellow pea protein isolate,” Food Research International, vol. 131, no. January, p. 109045, 2020, doi: 10.1016/j.foodres.2020.109045.
- M. L. Sosa-Flores, D. G. García-Hernández, C. A. Amaya-Guerra, M. Bautista-Villarreal, and A. R. González-Luna, “Obtención de aislados e hidrolizados proteicos de grillo (Acheta domesticus) y evaluación de su actividad antioxidante,” 2023.
- L. D. López Quimbayo, “Extracciòn a partir de hojas y semillas de Pentacalia nítida y evaluaciòn de la actividad antimicrobiana del extracto proteico acuoso,” 2012.
- C. Gutiérrez Paz Nutricionista et al., “EXTRACCIÓN DE AISLADO PROTEICO DE QUINUA (Chenopodium quinua: variedad blanca Junín) COMO ALTERNATIVA PARA EL USO EN SUPLEMENTOS ALTOS EN PROTEÍNA,” 2022.
- C. L. Kielkopf, W. Bauer, and I. L. Urbatsch, “Bradford assay for determining protein concentration,” Cold Spring Harb Protoc, vol. 2020, no. 4, pp. 136–138, 2020, doi: 10.1101/pdb.prot102269.
- N. J. Kruger, “The Bradford Method For Protein Quantitation,” Basic Protein and Peptide Protocols, pp. 17–24, 2009.
- G. L. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar,” Anal Chem, vol. 31, no. 3, pp. 426–428, 1959, doi: 10.1021/ac60147a030.
- I. P. Wood, A. Elliston, P. Ryden, I. Bancroft, I. N. Roberts, and K. W. Waldron, “Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay,” Biomass Bioenergy, vol. 44, pp. 117–121, Sep. 2012, doi: 10.1016/j.biombioe.2012.05.003.
- M. Buchanan, “TAPPI 204 cm-97,” Nanofibers - Production, Properties and Functional Applications, 2007, doi: 10.5772/916.
- C. R. Bernal Bustos, L. F. Ramírez, P. D. Duarte, A. M. Guzmán, and J. Acero, “Quinua, Chenopodium quinua (Willd.) en Colombia Caracterización de granulos de almidón nativo de quinua por IR-ATR, MEB, DRX,” Rev Invest (Guadalajara), vol. 8, no. 2, pp. 122–131, 2015, doi: 10.29097/2011-639x.31.
- S. A. Elsohaimy, T. M. Refaay, and M. A. M. Zaytoun, “Physicochemical and functional properties of quinoa protein isolate,” Annals of Agricultural Sciences, vol. 60, no. 2, pp. 297–305, 2015, doi: 10.1016/j.aoas.2015.10.007.
- José J. Martínez, Oscar J. Medina, and Rocio Zambrano, “Estudio fisicoquímico funcional de los aislados proteicos en semillas de maracuya(Passiflora eduli s f).,” vol. 9, 2011.
- M. Föste, D. Elgeti, A. K. Brunner, M. Jekle, and T. Becker, “Isolation of quinoa protein by milling fractionation and solvent extraction,” Food and Bioproducts Processing, vol. 96, pp. 20–26, 2015, doi: 10.1016/j.fbp.2015.06.003.
- S. A. Elsohaimy, T. M. Refaay, and M. A. M. Zaytoun, “Physicochemical and functional properties of quinoa protein isolate,” Annals of Agricultural Sciences, vol. 60, no. 2, pp. 297–305, 2015, doi: 10.1016/j.aoas.2015.10.007.
- C. Valenzuela, L. Abugoch, C. Tapia, and A. Gamboa, “Effect of alkaline extraction on the structure of the protein of quinoa (Chenopodium quinoa Willd.) and its influence on film formation,” Int J Food Sci Technol, vol. 48, no. 4, pp. 843–849, 2013, doi: 10.1111/ijfs.12035.
- B. Eab and S. Mpc, “EFECTOS DE LA SAL SOBRE LA SOLUBILIDAD Y LAS PROPIEDADES EMULSIONANTES DE LA CASEÍNA,” 2006.
- D. Voet and J. G. Voet, Bioquimica Voet 3ed.
- R. Lodeiro, Catálisis enzimática Fundamentos químicos de la vida, vol. 1. 2017.
- R. c. Bohinski, bioquímica. 1967.
- M. N. Perović, Z. D. Knežević Jugović, and M. G. Antov, “Improved recovery of protein from soy grit by enzyme-assisted alkaline extraction,” J Food Eng, vol. 276, no. December 2019, 2020, doi: 10.1016/j.jfoodeng.2019.109894.
- A. Vera, M. A. Valenzuela, M. Yazdani-Pedram, C. Tapia, and L. Abugoch, “Conformational and physicochemical properties of quinoa proteins affected by different conditions of high-intensity ultrasound treatments,” Ultrason Sonochem, vol. 51, no. October 2018, pp. 186–196, 2019, doi: 10.1016/j.ultsonch.2018.10.026.