Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Aprovechamiento de tallos de Cannabis sativa por pretratamiento termoquímico e hidrólisis enzimática

Resumen

Cannabis sativa es una planta ampliamente utilizada en Colombia para propósitos medicinales, para lo que se usa su flor, generando altas cantidades de tallos residuales. En este estudio, tallos de Cannabis se pretrataron con ácido sulfúrico o hidróxido de sodio diluido y su efecto se analizó por espectroscopía de infrarrojo (FTIR-ATR). Los sólidos remanentes se llevaron a hidrólisis enzimática usando dos mezclas enzimáticas comerciales: Celluclast 1.5 L y Cellic CTec3; se hizo seguimiento a la producción de azúcares reductores. Los pretratamientos removieron hemicelulosa y lignina, evidenciado por la reducción en las señales en 1734, 1540 y 1240 cm-1. También ocasionaron un incremento en la cristalinidad de la celulosa. Ambos pretratamientos lograron aumentar la producción de azúcares en la hidrólisis con las dos enzimas trabajadas. Aunque el pretratamiento alcalino fue mucho más efectivo que el ácido y permitió producir hasta 28.59 mg/mL de azúcares con Celluclast 1.5 L y 24.94 mg/mL con Cellic CTec3. El mezclar estas enzimas, usarlas de forma secuencial, o incrementar la carga enzimática no tuvo un efecto sobre la concentración final de azúcares alcanzada.

Palabras clave

Cannabis sativa, cristalinidad, azúcares reductores, hidrólisis enzimática, pretratamientos


Referencias

  • M. Ramírez, “La Industria del Cannabis Medicinal en Colombia”, Fedesarrollo, pp. 1–61, 2019, [En línea]. Disponible en: https://www.fedesarrollo.org.co/.
  • M. T. Ale, A. C. S. Hastrup, N. M. L. Hansen, y J. Hinge, “Upcycling of Medical Cannabis production and processing residues”. 2020.
  • Michigan Department of Environmental Quality, “White paper: The Environmental Impacts of the Marihuana Industry”. 2018, [En línea]. Disponible en: https://www.michigan.gov/-/media/Project/Websites/egle/Documents/Reports/AQD/field-operations/white-paper-2018-09-17-environmental-impacts-marijuana-industry.pdf?rev=207a679b3db34f838e64c1dd84775225.
  • National Cannabis Industry Association, “Environmental Sustainability in the Cannabis Industry: Impacts, Best Management Practices, and Policy Considerations”. 2020, [En línea]. Disponible en: https://thecannabisindustry.org/wp-content/uploads/2020/11/NCIA-Environmental-Policy-BMP-October-17-final.pdf.
  • M. Rehman et al., “Evaluation of hemp (Cannabis sativa L.) as an industrial crop: a review”, Environ. Sci. Pollut. Res., vol. 28, núm. 38, pp. 52832–52843, 2021, doi: 10.1007/s11356-021-16264-5.
  • G. Crini, E. Lichtfouse, N. Morin-crini, y G. Chanet, “Traditional and New Applications of Hemp”, Sustain. Agric. Rev., vol. 42, 2020, doi: 10.1007/978-3-030-41384-2.
  • F. Dhondt y S. S. Muthu, “Sustainable Hemp Products”, pp. 95–107, 2021, doi: 10.1007/978-981-16-3334-8_7.
  • L. Marrot et al., “Valorization of Hemp Stalk Waste Through Thermochemical Conversion for Energy and Electrical Applications”, Waste and Biomass Valorization, núm. November, 2021, doi: 10.1007/s12649-021-01640-6.
  • J. Zhao, Y. Xu, W. Wang, J. Griffin, K. Roozeboom, y D. Wang, “Bioconversion of industrial hemp biomass for bioethanol production: A review”, Fuel, vol. 281, núm. June, 2020, doi: 10.1016/j.fuel.2020.118725.
  • C. Asquer, E. Melis, E. A. Scano, y G. Carboni, “Opportunities for Green Energy through emerging crops: Biogas valorization of cannabis sativa l. residues”, Climate, vol. 7, núm. 12, 2019, doi: 10.3390/cli7120142.
  • I. B. Gunnarsson, M. Kuglarz, D. Karakashev, y I. Angelidaki, “Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.)”, Bioresour. Technol., vol. 182, pp. 58–66, 2015, doi: 10.1016/j.biortech.2015.01.126.
  • M. Kuglarz, M. Alvarado-Morales, D. Karakashev, y I. Angelidaki, “Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept”, Bioresour. Technol., vol. 200, pp. 639–647, 2016, doi: 10.1016/j.biortech.2015.10.081.
  • S. Gandolfi, L. Pistone, G. Ottolina, P. Xu, y S. Riva, “Hemp hurds biorefining: A path to green l-(+)-lactic acid production”, Bioresour. Technol., vol. 191, pp. 59–65, 2015, doi: 10.1016/j.biortech.2015.04.118.
  • P. Brazdausks et al., “Effect of aluminium sulphate-catalysed hydrolysis process on furfural yield and cellulose degradation of Cannabis sativa L. shives”, Biomass and Bioenergy, vol. 89, pp. 98–104, 2016, doi: 10.1016/j.biombioe.2016.01.016.
  • J. Rizhikovs et al., “Pretreated hemp shives: Possibilities of conversion into levoglucosan and levoglucosenone”, Ind. Crops Prod., vol. 139, núm. June, p. 111520, 2019, doi: 10.1016/j.indcrop.2019.111520.
  • M. M. Khattab y Y. Dahman, “Production and recovery of poly-3-hydroxybutyrate bioplastics using agro-industrial residues of hemp hurd biomass”, Bioprocess Biosyst. Eng., vol. 42, núm. 7, pp. 1115–1127, 2019, doi: 10.1007/s00449-019-02109-6.
  • A. Ji, L. Jia, D. Kumar, y C. G. Yoo, “Recent advancements in biological conversion of industrial hemp for biofuel and value-added products”, Fermentation, vol. 7, núm. 1, 2021, doi: 10.3390/fermentation7010006.
  • C. Moscariello, S. Matassa, G. Esposito, y S. Papirio, “From residue to resource: The multifaceted environmental and bioeconomy potential of industrial hemp (Cannabis sativa L.)”, Resour. Conserv. Recycl., vol. 175, núm. August, p. 105864, 2021, doi: 10.1016/j.resconrec.2021.105864.
  • F. P. Gomez, J. Hu, y M. A. Clarke, “Cannabis as a Feedstock for the Production of Chemicals, Fuels, and Materials: A Review of Relevant Studies to Date”, Energy and Fuels, vol. 35, núm. 7, pp. 5538–5557, 2021, doi: 10.1021/acs.energyfuels.0c04121.
  • L. Das et al., “Comparative Evaluation of Industrial Hemp Cultivars: Agronomical Practices, Feedstock Characterization, and Potential for Biofuels and Bioproducts”, ACS Sustain. Chem. Eng., vol. 8, pp. 6200–6210, 2020, doi: 10.1021/acssuschemeng.9b06145.
  • B. Adney y J. Baker, “Measurement of Cellulase Activities: Laboratory Analytical Procedure (LAP)”, núm. January. 2008.
  • A. Sluiter et al., “Determination of total solids in biomass and total dissolved solids in liquid process samples”, Lab. Anal. Proced., pp. 1–9, 2008.
  • A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, y D. Templeton, “Determination of Ash in Biomass”, Lab. Anal. Proced., pp. 1–5, 2005.
  • A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, y D. Templeton, “Determination of Extractives in Biomass”, Lab. Anal. Proced., pp. 1–9, 2008.
  • S. Vaz Jr, Ed., Analytical Techniques and Methods for Biomass, 1a ed. Springer Cham, 2016.
  • A. Hernández-López, D. A. Sanchez Felix, Z. Z. Sierra, I. G. Bravo, T. D. Dinkova, y A. X. Avila-Alejandre, “Quantification of reducing sugars based on the qualitative technique of Benedict”, ACS Omega, vol. 5, núm. 50, pp. 32403–32410, 2020, doi: 10.1021/acsomega.0c04467.
  • Z. Barta, E. Kreuger, y L. Björnsson, “Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas , heat and electricity production from industrial hemp”, Biotechnol. Biofuels, vol. 6, núm. 56, 2013.
  • B. G. Keiller, M. Potter, R. A. Burton, y P. J. van Eyk, “Elucidating the degradation reaction pathways for the hydrothermal carbonisation of hemp via biochemical compositional analysis”, Fuel, vol. 294, núm. March, 2021, doi: 10.1016/j.fuel.2021.120450.
  • E. Kreuger, B. Sipos, G. Zacchi, S. E. Svensson, y L. Björnsson, “Bioconversion of industrial hemp to ethanol and methane: The benefits of steam pretreatment and co-production”, Bioresour. Technol., vol. 102, núm. 3, pp. 3457–3465, 2011, doi: 10.1016/j.biortech.2010.10.126.
  • M. U. Gulmen, “Development of a recombinant brewing yeast to produce beer from hemp extract ( Cannabis Sativa L .)”, Western University, 2021.
  • L. Das et al., “Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum”, Bioresour. Technol., vol. 244, núm. August, pp. 641–649, 2017, doi: 10.1016/j.biortech.2017.08.008.
  • B. Sipos, E. Kreuger, S. E. Svensson, K. Réczey, L. Björnsson, y G. Zacchi, “Steam pretreatment of dry and ensiled industrial hemp for ethanol production”, Biomass and Bioenergy, vol. 34, núm. 12, pp. 1721–1731, 2010, doi: 10.1016/j.biombioe.2010.07.003.
  • M. B. Viswanathan et al., “Variability in structural carbohydrates, lipid composition, and cellulosic sugar production from industrial hemp varieties”, Ind. Crops Prod., vol. 157, núm. August, p. 112906, 2020, doi: 10.1016/j.indcrop.2020.112906.
  • C. Geun, X. Meng, Y. Pu, y A. J. Ragauskas, “The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies : A comprehensive review”, Bioresour. Technol., vol. 301, núm. January, p. 122784, 2020, doi: 10.1016/j.biortech.2020.122784.
  • K. Kucharska, P. Rybarczyk, I. Hołowacz, R. Łukajtis, M. Glinka, y M. Kamiński, “Pretreatment of lignocellulosic materials as substrates for fermentation processes”, Molecules, vol. 23, núm. 11, pp. 1–32, 2018, doi: 10.3390/molecules23112937.
  • J. Zhao, Y. Xu, W. Wang, J. Griffin, y D. Wang, “Conversion of liquid hot water, acid and alkali pretreated industrial hemp biomasses to bioethanol”, Bioresour. Technol., vol. 309, p. 123383, 2020, doi: 10.1016/j.biortech.2020.123383.
  • R. E. Abraham, J. Vongsvivut, C. J. Barrow, y M. Puri, “Understanding physicochemical changes in pretreated and enzyme hydrolysed hemp (Cannabis sativa) biomass for biorefinery development”, Biomass Convers. Biorefinery, vol. 6, núm. 2, pp. 127–138, 2016, doi: 10.1007/s13399-015-0168-4.
  • A. Kljun, T. A. S. Benians, F. Goubet, F. Meulewaeter, J. P. Knox, y R. S. Blackburn, “Comparative analysis of crystallinity changes in cellulose i polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes”, Biomacromolecules, vol. 12, núm. 11, pp. 4121–4126, 2011, doi: 10.1021/bm201176m.
  • O. A. Salinas, R. Benítez Benítez, y J. Martin Franco, “Chemical Modification of Fique Fiber by Alkalization and Esterification Utilizing Fique Fiber Dust as Residue of the Fiquera Industry”, J. Nat. Fibers, vol. 00, núm. 00, pp. 1–9, 2020, doi: 10.1080/15440478.2020.1841061.
  • K. Karimi y M. J. Taherzadeh, “A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity”, Bioresour. Technol., vol. 200, pp. 1008–1018, 2016, doi: 10.1016/j.biortech.2015.11.022.
  • I. Semhaoui et al., “Eco-friendly process combining acid-catalyst and thermomechanical pretreatment for improving enzymatic hydrolysis of hemp hurds”, Bioresour. Technol., vol. 257, núm. February, pp. 192–200, 2018, doi: 10.1016/j.biortech.2018.02.107.
  • N. Stevulova et al., “Properties Characterization of Chemically Modified Hemp Hurds”, Materials (Basel)., vol. 7, núm. December, pp. 8131–8150, 2014, doi: 10.3390/ma7128131.
  • G. Moxley, Z. Zhu, y Y. H. P. Zhang, “Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis”, J. Agric. Food Chem., vol. 56, núm. 17, pp. 7885–7890, 2008, doi: 10.1021/jf801303f.
  • M. Kuglarz, I. B. Gunnarsson, S. E. Svensson, T. Prade, E. Johansson, y I. Angelidaki, “Ethanol production from industrial hemp: Effect of combined dilute acid/steam pretreatment and economic aspects”, Bioresour. Technol., vol. 163, pp. 236–243, 2014, doi: 10.1016/j.biortech.2014.04.049.
  • L. J. Jönsson y C. Martín, “Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects”, Bioresour. Technol., vol. 199, pp. 103–112, 2016, doi: 10.1016/j.biortech.2015.10.009.
  • A. Pakarinen, J. Zhang, T. Brock, P. Maijala, y L. Viikari, “Enzymatic accessibility of fiber hemp is enhanced by enzymatic or chemical removal of pectin”, Bioresour. Technol., vol. 107, pp. 275–281, 2012, doi: 10.1016/j.biortech.2011.12.101.
  • H. Teugjas y P. Väljamäe, “Selecting β-glucosidases to support cellulases in cellulose saccharification”, Biotechnol. Biofuels, vol. 6, núm. 1, p. 105, 2013, doi: 10.1186/1754-6834-6-105.
  • R. R. Singhania, A. K. Patel, R. K. Sukumaran, C. Larroche, y A. Pandey, “Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production”, Bioresour. Technol., vol. 127, pp. 500–507, ene. 2013, doi: 10.1016/j.biortech.2012.09.012.
  • R. Agrawal et al., “Improved saccharification of pilot-scale acid pretreated wheat straw by exploiting the synergistic behavior of lignocellulose degrading enzymes”, RSC Adv., vol. 5, núm. 87, pp. 71462–71471, 2015, doi: 10.1039/C5RA13360B.
  • F. F. Sun et al., “Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass”, Enzyme Microb. Technol., vol. 79–80, pp. 42–48, nov. 2015, doi: 10.1016/j.enzmictec.2015.06.020.
  • R. Agrawal et al., “Synergistic Enzyme Cocktail to Enhance Hydrolysis of Steam Exploded Wheat Straw at Pilot Scale”, Front. Energy Res., vol. 6, nov. 2018, doi: 10.3389/fenrg.2018.00122.
  • S. Malgas, R. Chandra, J. S. Van Dyk, J. N. Saddler, y B. I. Pletschke, “Formulation of an optimized synergistic enzyme cocktail, HoloMix, for effective degradation of various pre-treated hardwoods”, Bioresour. Technol., vol. 245, pp. 52–65, dic. 2017, doi: 10.1016/j.biortech.2017.08.186.
  • J. Méndez Arias, L. F. A. Modesto, I. Polikarpov, y N. Pereira, “Design of an enzyme cocktail consisting of different fungal platforms for efficient hydrolysis of sugarcane bagasse: Optimization and synergism studies”, Biotechnol. Prog., vol. 32, núm. 5, pp. 1222–1229, sep. 2016, doi: 10.1002/btpr.2306.
  • X. Luo et al., “Promoting enzymatic hydrolysis of lignocellulosic biomass by inexpensive soy protein”, Biotechnol. Biofuels, vol. 12, núm. 1, p. 51, dic. 2019, doi: 10.1186/s13068-019-1387-x.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.