Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Dinámica Metabólica De Cepas Bacterianas En El Hidrolizado De Eichhornia crassipes: Estudio Comparativo Del Crecimiento Y La Producción De Ácido Láctico

Resumen

En la presente investigación, se comparan las condiciones de crecimiento en un proceso de fermentación a 35 °C, 180 rpm durante 60 h, de cuatro cepas de bacterias comerciales DRI SET 432, DRI FAS 992, Bacillus subtilis, y Kéfir de agua en dos medios de crecimiento (M1 medio de crecimiento base y M2 medio suplementado con hidrolizado de E. crassipes). La respuesta metabólica de las cepas en los medios se monitoreó y evaluó mediante la producción de biomasa por el método turbidimétrico de la escala de Mc Farland  (células.mL-1), consumo de azúcares (g.L-1) y producción de ácido láctico (%), cada 12 h. Las cepas evaluadas presentaron su fase exponencial a las 12 h, en M1 y M2, encontrando una disminución en la producción de biomasa y ácido láctico, en los procesos de fermentación con M2 para DRI SET 432, DRI FAS 992 y kéfir de agua, y un mayor crecimiento con Bacillus subtilis (32 x 108 células/mL) a las 60 h. Por otra parte, el mayor rendimiento de ácido láctico se presentó con la cepa FAS 992 (estreptococos salivarius sub. thermophilus) con 1.390 g de ácido láctico/ g de sustrato consumido en  M1 y en el Kéfir de agua con 0.753 g de ácido láctico/ g de sustrato consumido para M2.

Palabras clave

bacterias ácido lácticas, Bacillus sp., Eichhornia crassipes, hidrólisis ácida, pretratamiento alcalino


Citas

  1. J. Arreola-Vargas, “Biohydrogen production from lignocellulosic biomass hydrolysates : Evaluation on batch , semi-continuous and continuous systems.” p. 100, 2014.
  2. J. Yan, Z. Wei, Q. Wang, M. He, S. Li, and C. Irbis, “Bioethanol production from sodium hydroxide/hydrogen peroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianu strain,” Bioresour. Technol., vol. 193, pp. 103–109, 2015, doi: 10.1016/j.biortech.2015.06.069.
  3. A. Rodríguez Meléndez, F. Colmenares Mestizo, J. Barragán Vega, and M. Mayorga Betancourt, “Aprovechamiento energético integral de la Eichhornia crassipes (Buchón de agua),” Ingenium, vol. 18, no. 35, pp. 134–152, 2017, doi: 10.21500/01247492.3219.
  4. Corpoboyacá, “El ABC de la especie invasora Buchón de agua (Eichhornia crassipes).,” 2020.
  5. M. T. Arias Peñaranda, A. D. J. Martínez Roldán, and R. O. Cañizares Villanueva, “Producción de biodiesel a partir de microalgas: Parámetros del cultivo que afectan la producción de lípidos,” Acta Biol. Colomb., vol. 18, no. 1, pp. 43–70, 2013.
  6. L. Linares, J. Montiel, A. Millán, and J. Badillo, “Production of biofuels obtained from microalgae,” Rev. Soc. y Desarro. Sustentable, vol. 8, no. Especial 3b, pp. 101–115, 2012, https://www.redalyc.org/pdf/461/46125177011.pdf
  7. J. Montañez and D. Zapata, “Evaluación de la obtención de celulosa partiendo del buchón de agua (Eichhornia crassipes) mediante la hidrolisis básica y el proceso enzimático del hongo Pleurotus ostreatus”, 2018.
  8. G. Vanitjinda, T. Nimchua, and P. Sukyai, “Effect of xylanase-assisted pretreatment on the properties of cellulose and regenerated cellulose films from sugarcane bagasse,” Int. J. Biol. Macromol., vol. 122, pp. 1–33, 2019, doi: 10.1016/j.ijbiomac.2018.10.191.
  9. AOAC, “AOAC. Official methods of analysis of AOAC International.,” 2000. https://www.aoac.org/official-methods-of-analysis-21st-edition-2019
  10. M. Garriga, M. Almaraz, and A. Marchiaro, “Determination of reducing sugars in extracts of Undaria pinnatifida (harvey) algae by UV-visible spectrophotometry (DNS method),” Actas Ing., vol. 3, no. 1, pp. 173–1179, 2017.
  11. J.-G. Reales-Alfaro, L.-T. Trujillo-Daza, G. Arzuaga-Lindado, H.-I. Castaño-Peláez, and Á.-D. Polo-Córdoba, “Acid hydrolysis of water hyacinth to obtain fermentable sugars,” Ciencia, Tecnol. y Futur., vol. 5, no. 2, pp. 101–111, 2013.
  12. S. Krishnan et al., Bioethanol production from lignocellulosic biomass (water hyacinth): a biofuel alternative. INC, 2020. doi: 10.1016/b978-0-12-821264-6.00009-7.
  13. I. Reyes, C. Hernández-Jaimes, M. Meraz, and M. E. Rodríguez-Huezo, “Physicochemical changes of corn starch during lactic acid fermentation with lactobacillus bulgaricus,” Rev. Mex. Ing. Quim., vol. 17, no. 1, pp. 279–289, 2018, doi: 10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Reyes.
  14. J. López, S. García, H. Hernández, and M. Cornejo, “Estudio de la fermentación en de kéfir de agua de piña con tibicos,” Rev. Mex. Ing. Quim., vol. 16, no. 2, pp. 405–414, 2017.
  15. E. C. Alvarez and L. C. Sánchez, “Evaluation of growth of four species of the genus Bacillus sp., the first step to understand their biocontrol effect on Fusarium sp.,” Nova, vol. 14, no. 26, pp. 53–62, 2016.
  16. E. J. J. Picazo, C. Jose, A. G. Rodríguez, R. Cantón, M. L. Gomez-lus, and C. Rodríguez-avial, “Procedimientos en microbiologia clinica,” Enferm. Infecc. Microbiol. Clin., vol. 27, no. 10, p. 610, 2009, doi: 10.1016/j.eimc.2009.06.001.
  17. A. Zapata and S. Ramirez-Arcos, “A Comparative Study of McFarland Turbidity Standards and the Densimat Photometer to Determine Bacterial Cell Density,” Curr. Microbiol., vol. 70, no. 6, pp. 907–909, 2015, doi: 10.1007/s00284-015-0801-2.
  18. Y. Aragón-López, A. D. Pérez-Santiago, and M. A. Sánchez-Medina, “Cultivo in vitro de Lactarius volemus en la búsqueda de lectinas fúngicas,” Rev.Esp.Cienc.Quím.Biol., vol. 23, no. 1, pp. 51–58, 2020, doi: https://doi.org/10.22201/fesz.23958723e.2020.0.269.
  19. Instituto Colombiano de Normas Técnicas y Certificación, “NTC 4978. Leche y productos lácteos. Determinación de la acidez titulable. Método de referencia.,” p. 6, 2001, [Online]. Available: https://tuxdoc.com/queue/norma-tecnica-ntc-colombiana-4978_pdf?queue_id=5d122eece2b6f5296dfe653e
  20. M. Y. Harun, A. B. Dayang Radiah, Z. Zainal Abidin, and R. Yunus, “Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes),” Bioresour. Technol., vol. 102, no. 8, pp. 5193–5199, 2011, doi: 10.1016/j.biortech.2011.02.001.
  21. C. Tejada Tovar, I. Paz Astudillo, A. Villabona Ortíz, M. Espinosa Fortich, and C. López Badel, “Aprovechamiento del Jacinto de Agua (Eichhornia crassipes) para la síntesis de carboximetilcelulosa,” Revista Cubana de Química, vol. 30, no. 2. pp. 211–221, 2018.
  22. K. Ospino, E. Gómez, and L. Rios, “Evaluación de técnicas de pretratamiento en buchón de agua (Eichhornia crassipes) para la producción de bioetanol,” Inf. tecnológica, vol. 31, no. 1, pp. 215–226, 2020, doi: 10.4067/s0718-07642020000100215.
  23. P. Kampeerapappun, “Extraction and Characterization of Cellulose Nanocrystals Produced by Acid Hydrolysis from Corn Husk,” J. Met. Mater. Miner. J. Met. Mater. Min., vol. 25, no. 251, pp. 19–26, 2015.
  24. Y. Gao et al., “Effect of Eichhornia crassipes on production of N2 by denitrification in eutrophic water,” Ecol. Eng., vol. 68, pp. 14–24, 2014, doi: 10.1016/j.ecoleng.2014.01.002.
  25. G. Brundu, M. M. Azzella, C. Blasi, I. Camarda, M. Iberite, and L. Celesti-Grapow, “The silent invasion of Eichhornia crassipes (Mart.) Solms. in Italy,” Plant Biosyst., vol. 147, no. 4, pp. 1120–1127, 2013, doi: 10.1080/11263504.2013.861536.
  26. T. Istirokhatun, N. Rokhati, R. Rachmawaty, M. Meriyani, S. Priyanto, and H. Susanto, “Cellulose Isolation from Tropical Water Hyacinth for Membrane Preparation,” Procedia Environ. Sci., vol. 23, pp. 274–281, 2015, doi: 10.1016/j.proenv.2015.01.041.
  27. B. Sornvoraweat and J. Kongkiattikajorn, “Separated hydrolysis and fermentation of water hyacinth leaves for ethanol production,” KKU Res. J., vol. 15, no. 9, pp. 794–802, 2010, [Online]. Available: http://resjournal.kku.ac.th/article/15_09_794.pdf
  28. F. Ma, N. Yang, C. Xu, H. Yu, J. Wu, and X. Zhang, “Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth,” Bioresour. Technol., vol. 101, no. 24, pp. 9600–9604, 2010, doi: 10.1016/j.biortech.2010.07.084.
  29. D. A. Teixeira, A. S. Santos, L. A. Pantoja, P. L. Brito, and A. S. V. Costa, “Production of second generation ethanol from water hyacinth: A review,” Rev. Virtual Quim., vol. 11, no. 1, pp. 127–143, 2019, doi: 10.21577/1984-6835.20190010.
  30. M. Sarkar, A. K. M. L. Rahman, and N. C. Bhoumik, “Remediation of chromium and copper on water hyacinth (E. crassipes) shoot powder,” Water Resour. Ind., vol. 17, pp. 1–6, Jun. 2017, doi: 10.1016/j.wri.2016.12.003.
  31. V. B. Barua and A. S. Kalamdhad, “Effect of various types of thermal pretreatment techniques on the hydrolysis, compositional analysis and characterization of water hyacinth,” Bioresour. Technol., vol. 227, pp. 147–154, 2017, doi: 10.1016/j.biortech.2016.12.036.
  32. M. R. Kulkarni, T. Revanth, A. Acharya, and P. Bhat, “Removal of Crystal Violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study,” Resour. Technol., vol. 3, no. 1, pp. 71–77, Mar. 2017, doi: 10.1016/j.reffit.2017.01.009.
  33. R. Mukherjee and B. Nandi, “Improvement of in vitro digestibility through biological treatment of water hyacinth biomass by two Pleurotus species,” Int. Biodeterior. Biodegrad., vol. 53, no. 1, pp. 7–12, 2004, doi: 10.1016/S0964-8305(03)00112-4.
  34. S. Choi, C. W. Song, J. H. Shin, and S. Y. Lee, “Biorefineries for the production of top building block chemicals and their derivatives,” Metab. Eng., vol. 28, pp. 223–239, 2015, doi: 10.1016/j.ymben.2014.12.007.
  35. C. Chandler et al., “Hidrólisis ácida diluida en dos etapas de bagazo de caña de azúcar para la producción de azúcares fermentables,” Multiciencias, vol. 12, pp. 245–253, 2012, [Online]. Available: https://www.redalyc.org/pdf/904/90426810002.pdf
  36. A. Ganguly, P. K. Chatterjee, and A. Dey, “Studies on ethanol production from water hyacinth - A review,” Renewable and Sustainable Energy Reviews, vol. 16, no. 1. pp. 966–972, Jan. 2012. doi: 10.1016/j.rser.2011.09.018.
  37. P. Binod, K. U. Janu, R. Sindhu, and A. Pandey, Hydrolysis of lignocellulosic biomass for bioethanol production, 1st ed. Elsevier Inc., 2011. doi: 10.1016/B978-0-12-385099-7.00010-3.
  38. R. A. Sarria-Villa, J. A. Gallo-Corredor, and R. Benítez-Benítez, “Condiciones óptimas de deslignificación del aserrín de Pinus patula como etapa crucial en la obtención de bioetanol,” Inf. Técnico, vol. 82, no. 2, p. 160, 2018, doi: 10.23850/22565035.1401.
  39. A. Jongmeesuk, V. Sanguanchaipaiwong, and D. Ochaikul, “Pretreatment and Enzymatic Hydrolysis from Water Hyacinth ( Eichhornia crassipes ),” KMITL Sci. Technol. J., vol. 14, no. 2, pp. 79–86, 2014.
  40. K. Ospino Villalba and L. Alberto Ríos, “Bioetanol production from hyacinth water (Eichhornia crassipes) vs other materials regarding lignocellulosic,” 2012.
  41. S. J. A. van Kuijk, A. S. M. Sonnenberg, J. J. P. Baars, W. H. Hendriks, and J. W. Cone, “Fungal treated lignocellulosic biomass as ruminant feed ingredient: A review,” Biotechnol. Adv., vol. 33, no. 1, pp. 191–202, 2015, doi: 10.1016/j.biotechadv.2014.10.014.
  42. J. S. Kim, Y. Y. Lee, and T. H. Kim, “A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass,” Bioresour. Technol., vol. 199, pp. 42–48, 2016, doi: 10.1016/j.biortech.2015.08.085.
  43. Z. Guo, Q. Yang, W. Zhou, N. Xiao, and J. Cai, “Effect of three kinds of biological pretreatments on substrate characteristics and sugar yield by enzymatic hydrolysis of Eichhornia crassipes biomass,” Bioresour. Technol. Reports, vol. 17, no. February, p. 100983, 2022, doi: 10.1016/j.biteb.2022.100983.
  44. T. Brock, M. Madigan, Martinko, and J. Parker, Biología de los Microorganismos, 8th ed., vol. 8. Madrid, España, 1998.
  45. A. Gamero, J. Tronchoni, A. Querol, and C. Belloch, “Production of aroma compounds by cryotolerant Saccharomyces species and hybrids at low and moderate fermentation temperatures,” J. Appl. Microbiol., vol. 114, no. 5, pp. 1405–1414, 2013, doi: 10.1111/jam.12126.
  46. A. Montes, A. Santacruz, and J. Sañudo, “Efecto in vitro de Lactobacillus casei subsp rhamnous sobre el crecimiento de un aislado de Helicobacter pilory,” Rev. del Cent. Estud. en salud , vol. 1, no. 4, pp. 5–12, Aug. 2003.
  47. L. Serna Cock and E. J. Naranjo, “Producción de ácido láctico por una mezcla de Lactococcus lactis y Streptococcus salivarius en fermentaciones en discontinuo,” Rev. Colomb. Biotecnol., vol. 7, no. September, pp. 32–38, 2005, [Online]. Available: http://www.revistas.unal.edu.co/index.php/biotecnologia/article/view/497
  48. Henry Jurado-Gámez, Cristina Ramírez T, and Javier Martínez B, “In vivo evaluation of Lactobacillus plantarum as an alternative toantibiotics uses in piglets,” Rev.MVZ Córdob, vol. 18, no. supl, pp. 3648–3657, 2013.
  49. José Carmen Ramírez Ramírez, M. Y. V. G. Petra Rosas Ulloa, José Armando Ulloa, and Francisco Arce Romero, “Bacterias lácticas: Importancia en alimentos y sus efectos en la salud,” Rev. Fuente Año 2, vol. 7, no. abril-junio, pp. 2–16, Jun. 2011.
  50. Parra Huertas Ricardo Adolfo, “Review Lactic acid bacteria: Functional role in the foods,” Fac. ciencias Agropecu., vol. 8, no. 1, pp. 1–13, 2010.
  51. P. Laopaiboon, A. Thani, V. Leelavatcharamas, and L. Laopaiboon, “Acid hydrolysis of sugarcane bagasse for lactic acid production,” Bioresour. Technol., vol. 101, no. 3, pp. 1036–1043, 2010, doi: 10.1016/j.biortech.2009.08.091.
  52. M. D. Pendón, A. A. Bengoa, C. Iraporda, M. Medrano, G. L. Garrote, and A. G. Abraham, “Water kefir: Factors affecting grain growth and health-promoting properties of the fermented beverage,” J. Appl. Microbiol., vol. 133, no. 1, pp. 162–180, 2022, doi: 10.1111/jam.15385.
  53. A. C. Román, “Evaluación del potencial de producción de ácido láctico mediante cepas de Bacillus subtilis,” 2018.
  54. A. C. Pulido Jiménez, “Evaluación del efecto de Bacillus subtilis EA-CB0575 en la promoción de crecimiento de Zea mays y Solanum lycopersicum a nivel de invernadero,” 2016.
  55. R. Humberto, “Efecto de difernetes concentraciones de carboximetilcelulosa sobre la cinética de crecimiento de Bacillus spp.,” 2014. [Online]. Available: https://dspace.unitru.edu.pe/bitstream/handle/UNITRU/4130/Ramírez Romero Jonathann Humberto.pdf?sequence=1&isAllowed=y
  56. E. Fernández, O. Fernández-Larrea, and R. Núñez, “Influencia de los nutrientes sobre la velocidad de crecimiento de Bacillus thuringiensis LBT-25,” 2003.
  57. M. Schallmey, A. Singh, and O. P. Ward, “Developments in the use of Bacillus species for industrial production,” Canadian Journal of Microbiology, vol. 50, no. 1. pp. 1–17, 2004. doi: 10.1139/w03-076.
  58. S. Shukla, T. B. Choi, H. K. Park, M. Kim, I. K. Lee, and J. K. Kim, “Determination of non-volatile and volatile organic acids in Korean traditional fermented soybean paste (Doenjang),” Food and Chemical Toxicology, vol. 48, no. 8–9. pp. 2005–2010, 2010. doi: 10.1016/j.fct.2010.04.034.
  59. Z. Yan, X. W. Zheng, J. Y. Chen, J. S. Han, and B. Z. Han, “Effect of different Bacillus strains on the profile of organic acids in a liquid culture of Daqu,” J. Inst. Brew., vol. 119, no. 1–2, pp. 78–83, 2013, doi: 10.1002/jib.58.
  60. Y. Su, C. Liu, H. Fang, and D. Zhang, “Bacillus subtilis: A universal cell factory for industry, agriculture, biomaterials and medicine,” Microb. Cell Fact., vol. 19, no. 1, pp. 1–12, 2020, doi: 10.1186/s12934-020-01436-8.
  61. T. Gao, Y. Wong, C. Ng, and K. Ho, “L-lactic acid production by Bacillus subtilis MUR1,” Bioresource Technology, vol. 121. pp. 105–110, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.biortech.2012.06.108
  62. B. E. González-Martínez, M. Gómez-Treviño, and Z. Jiménez-Salas, “Bacteriocinas de probióticos,” Abril-Junio, 2003. [Online]. Available: www.medigraphic.org.mx
  63. Cristina Ramírez Toro, “Uso de bactérias lácticas probióticas na alimentação decamarões Litopenaeus vannamei como inibidoras demicroorganismos patogênicos e estimulantes do sistema imune,” 2005.
  64. E. Schuler, M. Demetriou, N. R. Shiju, and G. J. M. Gruter, “Towards Sustainable Oxalic Acid from CO2 and Biomass,” ChemSusChem, vol. 14, no. 18. John Wiley and Sons Inc, pp. 3636–3664, Sep. 20, 2021. doi: 10.1002/cssc.202101272.
  65. C. Delorme, “Safety assessment of dairy microorganisms: Streptococcus thermophilus,” Int. J. Food Microbiol., vol. 126, no. 3, pp. 274–277, Sep. 2008, doi: 10.1016/j.ijfoodmicro.2007.08.014.
  66. P. Hols et al., “New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics,” FEMS Microbiology Reviews, vol. 29, no. 3 SPEC. ISS. Elsevier, pp. 435–463, 2005. doi: 10.1016/j.femsre.2005.04.008.
  67. R. Iyer, S. K. Tomar, T. Uma Maheswari, and R. Singh, “Streptococcus thermophilus strains: Multifunctional lactic acid bacteria,” International Dairy Journal, vol. 20, no. 3. pp. 133–141, Mar. 2010. doi: 10.1016/j.idairyj.2009.10.005.
  68. D. Mora et al., “Genetic diversity and technological properties of Streptococcus thermophilus strains isolated from dairy products,” J. Appl. Microbiol., vol. 93, no. 2, pp. 278–287, 2002, doi: 10.1046/j.1365-2672.2002.01696.x.
  69. Y. Cui, T. Xu, X. Qu, T. Hu, X. Jiang, and C. Zhao, “New insights into various production characteristics of streptococcus thermophilus strains,” International Journal of Molecular Sciences, vol. 17, no. 10. MDPI AG, Oct. 12, 2016. doi: 10.3390/ijms17101701.
  70. M. Gobbetti, E. Neviani, and P. Fox, “Cheese: An Overview,” in The Cheeses of Italy: Science and Technology, Springer International Publishing, 2018, pp. 39–53. doi: 10.1007/978-3-319-89854-4_3.
  71. S. Mende, H. Rohm, and D. Jaros, “Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products,” International Dairy Journal, vol. 52. Elsevier Ltd, pp. 57–71, Jan. 01, 2016. doi: 10.1016/j.idairyj.2015.08.002.
  72. A. Meucci et al., “Folates biosynthesis by Streptococcus thermophilus during growth in milk,” Food Microbiol., vol. 69, pp. 116–122, Feb. 2018, doi: 10.1016/j.fm.2017.08.001.
  73. J. P. Burton, R. M. Chanyi, and M. Schultz, “The Microbiota in Gastrointestinal Pathophysiology Common Organisms and Probiotics: Streptococcus thermophilus (Streptococcus salivarius subsp. thermophilus),” 2017. doi: 10.1016/B978-0-12-804024-9/00019-7.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede {advancedSearchLink} para este artículo.