Skip to main navigation menu Skip to main content Skip to site footer

Biomass growth of water kefir with variations in sucrose and tibicos concentration.

Abstract

Water kefir is a slightly acidic fermented beverage made from sugar solutions. Its fermentation process involves a variety of microorganisms, mainly lactic acid bacteria and yeasts, which are embedded in a carbohydrate-based biopolymer known as dextran. In order to find the best conditions for obtaining this biopolymer with potential industrial applications and as a possible substitute for petroleum-derived polymers, this research evaluated the effect of the microbial consortium of commercial water kefir grains (tibicos) on the fermentation process. The best initial concentration of tibicos was 0.02 g/mL in a culture medium composed of 100 g/L sucrose. The biomass production obtained at 48 hours was 23.9 g, standing for a 597% increase compared to the initial value of 4.0 g, with a final pH of 4.05 ± 0.1 and a pH reduction of 0.5 units at the end of fermentation. A total of 160 ± 0.06 g of dextran were recovered per kilogram of water kefir grains used. Dextran was isolated through acid purification and oven-drying. It was characterized and found using Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The thermal properties of dextran were studied using Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA).


References

  1. M. Monar, I. Dávalos, S. Zapata, and M. Caviedes, “Chemical and microbiological characterization of Ecuadorian homemade water kefir,” Avances en Ciencia e Ingenierías, Mar. 2014.
  2. F. Waldherr, V. Doll, and R. Vogel, “Identification and characterization of a glucan-producing enzyme from Lactobacillus hilgardii TMW 1.828 involved in granule formation of water kefir,” Food Microbiol, 2010.
  3. C. V. Carlos Andrés and L. P. Ángela, “Inhibición del crecimiento de Aspergillus ochraceus mediante ‘panela’ fermentada con gránulos de kefir de agua,” Revista de la facultad de química farmacéutica, vol. 21, no. 3, pp. 191–200, 2014.
  4. C. A. Caro Vélez and L. Peláez. A.M, “Capacidad antifúngica de sobrenadantes libres de células obtenidos de la fermentación de un sustrato de ‘panela’ con gránulos de kéfir de agua.,” Rev Colomb Biotecnol, vol. 17, no. 2, pp. 22–32, 2015, doi: 10.15446/rev.colomb.biote.v17n2.42758.
  5. V. Alves et al., “Development of fermented beverage with water kefir in water-soluble coconut extract (Cocos nucifera L.) with inulin addition,” LWT - Food Science and Technology, no. 145, 2021, doi: https://doi.org/10.1016/j.lwt.2021.111364.
  6. D. Laureys, L. De Vuyst, A. Van Jean, and J. Dumont, “Investigation of the instability and low water kefir grain growth during an industrial water kefir fermentation process,” Appl Microbiol Biotechnol, pp. 2811–2819, 2017.
  7. M. Cornejo-Mazón, S. García-Pinilla, H. Hernández-Sánchez, and J. P. López-Rojo, “Estudio de la fermentación de kéfir de agua de piña con tíbicos.,” Rev Mex Ing Quim, vol. 16, no. 2, pp. 405–414, 2017.
  8. O. Rodríguez and H. Hanssen, “Obtención de dextrano y fructosa, utilizando residuos agroindustriales con la cepa Leuconostoc mesenteroides NRRL B512-F,” Escuela de Ingeniería de Antioquia, Medellín (Colombia), 2007.
  9. H. Suomalainen and M. Lehtonen, “The production of aroma compounds by yeast,” pp. 149–156, 1978.
  10. K. Ettayebi, F. Errachidi, L. Jamai, and M. A. Tahri-Jouti, “Biodegradation of polyphenols with immobilized Candida tropicalis under metabolic induction,” FEMS Microbiol Lett, pp. 215–219, 2003.
  11. D. Laureys and L. De Vuyst, “Microbial species diversity, community dynamics, and metabolite kinetics of water Kefir fermentation,” Appl Environ Microbiol, vol. 80, no. 8, pp. 2564–2572, 2014, doi: 10.1128/AEM.03978-13.
  12. D. Laureys et al., “The Type and Concentration of Inoculum and Substrate as Well as the Presence of Oxygen Impact the Water Kefir Fermentation Process,” Front Microbiol, vol. 12, p. 161, Feb. 2021, doi: 10.3389/fmicb.2021.628599.
  13. O. Corona et al., “Characterization of kefir-like beverages produced from vegetable juices,” Food Science and Technology, vol. 66, pp. 572–581, 2016.
  14. K. M. Lynch, S. Wilkinson, L. Daenen, and E. K. Arendt, “An update on water kefir: Microbiology, composition and production,” International Journal of Food Microbiology, vol. 345. Elsevier B.V., p. 109128, May 02, 2021. doi: 10.1016/j.ijfoodmicro.2021.109128.
  15. A. Bosch, M. Golowczyc, A. Abraham, and G. Garrote, “Rapid discrimination of lactobacilli isolated from kefir grains by FT-IR spectroscopy,” International Journal of Food Microbiology , pp. 280–287, 2006.
  16. M. Alberto. Hernández Tores, “Caracterización fisicoquímica de un polímero obtenido a partir de tibicos (kéfir de agua) y su evaluación como agente encapsulante de Bacillus thuringiensis.,” Universidad autónoma de Nuevo León., 2018. [Online]. Available: http://eprints.uanl.mx/15890/
  17. R. Rubio, A. Jofré, B. Martín, T. Aymerich, and M. Garriga, “Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages,” Food Microbiol, vol. 38, pp. 303–311, 2014, doi: 10.1016/j.fm.2013.07.015.
  18. S. na Liu, Y. Han, and Z. jiang Zhou, “Lactic acid bacteria in traditional fermented Chinese foods,” Food Research International, vol. 44, no. 3, pp. 643–651, 2011, doi: 10.1016/j.foodres.2010.12.034.
  19. J. Stadie, A. Gulitz, M. A. Ehrmann, and R. F. Vogel, “Metabolic activity and symbiotic interactions of lactic acid bacteria and yeasts isolated from water kefir,” Food Microbiol, vol. 35, no. 2, pp. 1–7, 2013, doi: 10.1016/j.fm.2013.03.009.
  20. M. Horisberger, “Structure of the dextran of the tibi grain,” vol. 1, pp. 379–385, 1969.
  21. B. Cheirsilp and S. Radchabut, “Use of whey lactose from dairy industry for economical kefiran production by Lactobacillus kefiranofaciens in mixed cultures with yeasts,” N Biotechnol, vol. 28, no. 6, pp. 574–580, Oct. 2011, doi: 10.1016/j.nbt.2011.01.009.
  22. A. Rosa, A. Monroy, G. P. Lech, C. Diego, and L. Mej, “Evaluación del kéfir de agua (tibicos)”.
  23. B.-Z. Li, Z.-H. Liu, Y.-S. Tan, Y.-J. Yuan, and R.-K. Zhang, “Microbial adaptation to enhance streess tolerance.,” Front Microbiol, 2022, doi: 10.3389/fmicb.2022.888746.
  24. D. Laureys, M. Aerts, P. Vandamme, and L. De Vuyst, “The buffer capacity and calcium concentration of water influence the microbial species diversity, grain growth, and metabolite production during WK fermentation.,” Front Microbiol, vol. 10, 2019, doi: 10.3389/fmicb.2019.02876.
  25. M. Dolores. Pendón, A. Agustina. Bengoa, Carolina. Iraporda, Micaela. Medrano, Graciela. Garrote, and Analía. Abraham, “Water kefir factors affecting grain growth and health-promoting properties of the fermented beverage.,” J Appl Microbiol, vol. 2022, no. 133, pp. 162–180, Nov. 2021.
  26. David. Laureys and Luc. De Vuyst, “The water kefir grain inoculum determines the characteristics of the resulting water kefir fermentation process.,” Research Group of Industrial Microbiology and Food Biotechnology, Nov. 2016.
  27. R. Purama, P. Goswami, A. Khan, and A. Goyal, “Structural analysis and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640,” Carbohydr Polym, pp. 30–35, 2009.
  28. Kun. Wang, Mengmeng. Niu, Di. Yao, Jing. Zhao, and Yue. Wu, “Physicochemical characteristics and in vitro and in vivo antioxidant activity of a cell-bound exopolysaccharide produced by Lactobacillus fermentum S1,” Int J Biol Macromol, Jul. 2019.
  29. N. Chowdhury, A. Ismail, and M. Hossen, “Polyvinyl alcohol/polysaccharides hydrogel graft materials for arsenic and heavy metal removal,” New Journal of Chemistry, 2015.
  30. K. Valappil Sajna, R. Sukumaran, and L. Gottumukka, “Studies on structural and physical characteristics of a novel exopolysaccharide from Pseudozyma sp. NII 08165,” Int J Biol Macromol, pp. 84–89, 2013.
  31. Y. Yang, Q. Peng, Y. Guo, and H. Xiao, “Isolation and characterization of dextran produced by Leuconostoc citreum NM105 from manchurian sauerkraut,” Carbohydr Polym, pp. 365–372, 2015.
  32. W. Chen, D. Fan, E. Terentejev, and L. Wang, “Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces.,” Nature, 2015, doi: 10.1038/srep15159.
  33. H. Debemardi-De la Vequia, J. D. Castilla-Marroquín, R. Hernández-Martínez, Hernández-Rosas., M. A. Ríos-Corripio, and M. Rojas-López, “Dextran synthesis by native sugarcane microorganisms.,” Rev Mex Ing Quim, vol. 19, no. 1, pp. 177–185, 2020.
  34. S. Davidović, S. Dimitrijevic-Brankovic, M. Miljković, and M. Rajilić-Stojanović, “Water Kefir grain as a source of potent dextran producing lactic acid bacteria.,” Hem Ind, 2014, doi: 10.2298/HEMIND140925083D.
  35. I. F. Da Silveira Ramos, M. de A. Lucena, and M. Silva Geronço, “Biopolymer from Water Kefir as a Potential Clean-Label Ingredient for Health Applications: Evaluation of New Properties,” Molecules, vol. 27, no. 3895, 2022, doi: 10.3390/molecules27123895.
  36. A. Jaturapiree, P. Nuwan, and P. Piwpan, “Production of Dextran by Leuconostoc Mesenteroides TISTR 053 in Fed Batch Fermentation,” KKU Res, vol. 22, no. 1, 2016.
  37. A. Savi, G. Calegari, V. Queiroz, and E. Pereira, “Chemical characterization and antioxidant of polysaccharide extracted from Dioscorea bulbifera,” J King Saud Univ Sci, 2018.
  38. M. G. Llamas-Arriba et al., “Characterization of dextrans

Downloads

Download data is not yet available.