Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Estrategias de aprovechamiento del jacinto de agua (Eichhornia crassipes) hacia la producción de bioetanol

Resumen

El jacinto de agua (Eichhornia crassipes) se considera una especie invasora, debido a su alta adaptabilidad a un amplio tipo de ecosistemas, que afecta el equilibrio natural de los sistemas acuáticos. Su alto desarrollo incide en la reducción del oxígeno, la flora y la fauna en las fuentes de agua y a su difícil erradicación, haciendo necesario considerar buscar aplicaciones del uso de su biomasa, pudiéndose aprovechar como un recurso energético (bioetanol, biogás, briqueta, etc.), debido a que presenta una alta concentración de celulosa y hemicelulosa y un bajo contenido de lignina. La presente revisión muestra el potencial uso que tiene esta planta, indicando los diferentes tipos de procesos que se llevan a cabo para su transformación en la producción de bioetanol, justificando la selección de este tipo de materia prima, seguido de las fases de pretratamiento, hidrólisis, fermentación y destilación que sufre la misma, hasta llegar al producto final. 

Palabras clave

Biomasa, Bioetanol, Jacinto de agua, Lignina

PDF

Citas

  1. J. Rzedowski and G. Calderón de Rzedowski, “Anarcadiaceae”, Flora del Bajío y de regiones adyacentes., vol. 78, no. 1, pp. 1–52, 1999.
  2. R. Sindhu et al., “Water hyacinth a potential source for value addition: An overview,” Bioresource Technology, vol. 230, no. 1, pp. 152–162, 2017, doi: 10.1016/j.biortech.2017.01.035. DOI: https://doi.org/10.1016/j.biortech.2017.01.035
  3. M. Guevara, G. Cando, “Eichhornia crassipes, su invasividad y potencial fitorremediador,” La Granja: Revista de Ciencias de la Vida, vol. 22, no. 2, pp. 5–11, 2015, doi: 10.17163/lgr.n22.2015.01.
  4. D. A. Teixeira, A. S. Santos, L. A. Pantoja, P. L. Brito, and A. S. V. Costa, “Production of second generation ethanol from water hyacinth: A review,” Revista Virtual de Quimica, vol. 11, no. 1, pp. 127–143, 2019. doi: 10.21577/1984-6835.20190010. DOI: https://doi.org/10.21577/1984-6835.20190010
  5. A. Rodríguez Meléndez, F. Colmenares Mestizo, J. Barragán Vega, and M. Mayorga Betancourt, “Aprovechamiento energético integral de la Eichhornia crassipes (Buchón de agua),” Ingenium Revista de la facultad de ingeniería, vol. 18, no. 35, pp. 134–152, 2017, doi: 10.21500/01247492.3219.
  6. S. Rezania et al., “Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater,” Journal of Environmental Management, vol. 163, no. 1, pp. 125–133, 2015, doi: 10.1016/j.jenvman.2015.08.018.
  7. U. F. C. Sayago, Y. P. Castro, L. R. C. Rivera, and A. G. Mariaca, “Estimation of equilibrium times and maximum capacity of adsorption of heavy metals by E. crassipes (review),” Environmental Monitoring and Assessment, vol. 192, no. 2, pp. 1-16, 2020, doi: 10.1007/s10661-019-8032-9. DOI: https://doi.org/10.1007/s10661-019-8032-9
  8. T. Schubert, “Production routes of advanced renewable C1 to C4 alcohols as biofuel components – a review,” Biofuels, Bioproducts and Biorefining, vol. 1, no. 1, pp. 1–34, 2020, doi: 10.1002/bbb.2109. DOI: https://doi.org/10.1002/bbb.2109
  9. S. Mohapatra, C. Mishra, S. S. Behera, and H. Thatoi, “Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass – A review,” Renewable and Sustainable Energy Reviews, vol. 78, no. 1, pp. 1007–1032, March. 2017, doi: 10.1016/j.rser.2017.05.026. DOI: https://doi.org/10.1016/j.rser.2017.05.026
  10. D. J. Ahn, S. K. Kim, and H. S. Yun, “Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae,” Bioprocess and Biosystems Engineering, vol. 35, no. 1–2, pp. 35–41, 2012, doi: 10.1007/s00449-011-0600-5. DOI: https://doi.org/10.1007/s00449-011-0600-5
  11. M. Boillot, P. Girard, C. Aubart, and S. Fauchille, “Review on Pretreatment Methods and Ethanol Production from Cellulosic Water Hyacinth Shahabaldin,” Symposium Papers - Energy from Biomass and Wastes, vol. 12, no. 1, pp. 1–17, 1983.
  12. R. Kumar and C. E. Wyman, “Does change in accessibility with conversion depend on both the substrate and pretreatment technology?”, Bioresource Technology, vol. 100, no. 18, pp. 4193–4202, 2009, doi: 10.1016/j.biortech.2008.11.058. DOI: https://doi.org/10.1016/j.biortech.2008.11.058
  13. A. Ganguly, P. K. Chatterjee, and A. Dey, “Studies on ethanol production from water hyacinth — A review,” Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 966–972, 2012, doi: 10.1016/j.rser.2011.09.018. DOI: https://doi.org/10.1016/j.rser.2011.09.018
  14. P. Binod, K. U. Janu, R. Sindhu, and A. Pandey, Hydrolysis of lignocellulosic biomass for bioethanol production, 1st ed. Elsevier Inc., 2011. doi: 10.1016/B978-0-12-385099-7.00010-3. DOI: https://doi.org/10.1016/B978-0-12-385099-7.00010-3
  15. S. Malherbe and T. E. Cloete, “Lignocellulose biodegradation: Fundaments and applications,” Reviews in Environmental Science and Biotechnology, vol. 1, no. 2, pp. 105–114, 2002, doi: 10.1023/A:1020858910646. DOI: https://doi.org/10.1023/A:1020858910646
  16. D. G. Olson, J. E. McBride, A. Joe Shaw, and L. R. Lynd, “Recent progress in consolidated bioprocessing”, Current Opinion in Biotechnology, vol. 23, no. 3, pp. 396–405, 2012, doi: 10.1016/j.copbio.2011.11.026. DOI: https://doi.org/10.1016/j.copbio.2011.11.026
  17. R. B. Simonetti, “Effect of Biological Pretreatment of Water Hyacinth on Enzymatic Hydrolysis for Bioethanol Production,” Asian journal of chemistry, vol. 26, no. 18, pp. 1–6, 2014.
  18. B. C. Saha, L. B. Iten, M. A. Cotta, and Y. V. Wu, “Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol,” Process Biochemistry, vol. 40, no. 12, pp. 3693–3700, 2005, doi: 10.1016/j.procbio.2005.04.006. DOI: https://doi.org/10.1016/j.procbio.2005.04.006
  19. M. Sedlak and N. W. Y. Ho, “Cellulosic Ethanol Produced by Recombinant Yeast 403 403 Production of Ethanol from Cellulosic Biomass Hydrolysates Using Genetically Engineered Saccharomyces Yeast Capable of Cofermenting Glucose and Xylose”, Applied Biochemistry and Biotechnology, vol. 113-116, no. 1, pp. 403–416, 2004, doi: 10.1385/abab:114:1-3:403 DOI: https://doi.org/10.1385/ABAB:114:1-3:403
  20. H. W. Wisselink et al., “Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose,” Applied and Environmental Microbiology, vol. 73, no. 15, pp. 4881–4891, Aug. 2007, doi: 10.1128/AEM.00177-07. DOI: https://doi.org/10.1128/AEM.00177-07
  21. D. Dionisi, J. A. Anderson, F. Aulenta, A. Mccue, and G. Paton, “The potential of microbial processes for lignocellulosic biomass conversion to ethanol: A review,” Journal of Chemical Technology and Biotechnology, vol. 90, no. 3, pp. 366–383, 2015, doi: 10.1002/jctb.4544. DOI: https://doi.org/10.1002/jctb.4544
  22. M. Boillot, P. Girard, C. Aubart, and S. Fauchille, “Review on Pretreatment Methods and Ethanol Production from Cellulosic Water Hyacinth Shahabaldin,” Symposium Papers - Energy from Biomass and Wastes, vol. 12, no. 1, pp. 1031–1055, 1983.
  23. S. Krishnan et al., Bioethanol production from lignocellulosic biomass (water hyacinth): a biofuel alternative. INC, 2020. doi: 10.1016/b978-0-12-821264-6.00009-7. DOI: https://doi.org/10.1016/B978-0-12-821264-6.00009-7
  24. Q. Zhang, Y. Wei, H. Han, and C. Weng, “Enhancing bioethanol production from water
  25. hyacinth by new combined pretreatment methods,” Bioresource Technology, vol. 251, no. 1, pp. 358–363, Nov. 2018, doi: 10.1016/j.biortech.2017.12.085. DOI: https://doi.org/10.1016/j.biortech.2017.12.085
  26. M. Toor et al., “An overview on bioethanol production from lignocellulosic feedstocks,” Chemosphere, vol. 242, no. 1, pp. 1-57, Mar. 2020, doi: 10.1016/j.chemosphere.2019.125080. DOI: https://doi.org/10.1016/j.chemosphere.2019.125080
  27. G. Fajardo, F. Sierra, and I. Contreras-Andrade, “Etanol lignocelulósico: energético obtenido de procesos fermentativos de la biomasa presente en el jacinto de agua.” trabajo de fin de grado, Univ. Nac. de Colombia. Bogotá, 2013.
  28. D. Mishima, M. Kuniki, K. Sei, S. Soda, M. Ike, and M. Fujita, “Ethanol production from candidate energy crops: Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.),” Bioresource Technology, vol. 99, no. 7, pp. 2495–2500, 2008, doi: 10.1016/j.biortech.2007.04.056. DOI: https://doi.org/10.1016/j.biortech.2007.04.056
  29. A. Kumar, L. K. Singh, and S. Ghosh, “Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis,” Bioresource Technology, vol. 100, no. 13, pp. 3293–3297, 2009, doi: 10.1016/j.biortech.2009.02.023. DOI: https://doi.org/10.1016/j.biortech.2009.02.023
  30. J. Rodríguez, “Obtención de las funciones de transferencia de las temperaturas del tope y fondeo de una destilación binaria,” Revista Digital de Investigación y Postgrado, vol. 5, no. 2, pp. 795–802, 2015.
  31. A. A. Kiss and R. Smith, “Rethinking energy use in distillation processes for a more sustainable chemical industry,” Energy, vol. 203, no. 1, pp. 117788, 2020, doi: 10.1016/j.energy.2020.117788. DOI: https://doi.org/10.1016/j.energy.2020.117788
  32. A. Valiente-Barderas, “Historia de la destilación,” Educación Química, vol. 7, no. 2, 1996. DOI: https://doi.org/10.22201/fq.18708404e.1996.2.66669
  33. A. Montoya, “Diseño de una columna de destilación para recuperación de una sustancia termosensible” trabajo de fin de grado, Pontificia Universidad Católica de Valparaíso, 2012.
  34. M. Parzanese, “Fermentación en sustrato sólido: Aprovechamiento de subproductos de la agroindustria,” Tecnol. para la Ind. Aliment., vol. 2, n°. 27, pp. 1–13, 2016.
  35. L. Castellano and Y. Albernas, “Análisis energético e integración de la destilación de alcohol: método convencional y doble efecto” vol. 43, no. 3, pp. 49–65, 2016, URL: http://centroazucar.qf.uclv.edu.cu.
  36. J. E. Terán and P. D. Solórzano, “Obtención de bioetanol del jacinto de agua (Eichhornia Crassipes) proveniente del embalse Sixto Durán Ballen mediante proceso enzimático”, trabajo de fin de grado, Escuela Superior Politécnica Agropecuaria de Manabí, 2013.
  37. S. Rezania et al., “Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater,” Journal of Environmental Management, vol. 163, no. 1, pp. 125–133, 2015, doi: 10.1016/j.jenvman.2015.08.018. DOI: https://doi.org/10.1016/j.jenvman.2015.08.018
  38. R. Kleerebezem and M. C. van Loosdrecht, “Mixed culture biotechnology for bioenergy production,” Current Opinion in Biotechnology, vol. 18, no. 3, pp. 207–212, 2007, doi: 10.1016/j.copbio.2007.05.001. DOI: https://doi.org/10.1016/j.copbio.2007.05.001
  39. F. Alatriste-Mondragón, P. Samar, H. H. J. Cox, B. K. Ahring, and R. Iranpour, “Anaerobic Codigestion of Municipal, Farm, and Industrial Organic Wastes: A Survey of Recent Literature,” Water Environment Research, vol. 78, no. 6, pp. 607–636, 2006, doi: 10.2175/106143006x111673. DOI: https://doi.org/10.2175/106143006X111673
  40. C. Li and H. H. P. Fang, “Fermentative hydrogen production from wastewater and solid wastes by mixed cultures,” Critical Reviews in Environmental Science and Technology, vol. 37, no. 1, pp. 1–39, 2007, doi: 10.1080/10643380600729071. DOI: https://doi.org/10.1080/10643380600729071
  41. J. Y.-T. K. Ming-Ju Chen, Kreuter, “Influence of the pH on (Open) Mixed Culture Fermentation of Glucose: A Chemostat Study,” Journal of anatomy, vol. 189, no.1, pp. 503–505, 1996, doi: 10.1002/bit.
  42. D. Dionisi, M. Majone, G. Vallini, S. Di Gregorio, and M. Beccari, “Effect of the length of the cycle on biodegradable polymer production and microbial community selection in a sequencing batch reactor,” Biotechnology Progress, vol. 23, no. 5, pp. 1064–1073, 2007, doi: 10.1021/bp060370c. DOI: https://doi.org/10.1021/bp060370c
  43. M. Villano et al., “Effect of pH on the production of bacterial polyhydroxyalkanoates by mixed cultures enriched under periodic feeding,” Process Biochemistry, vol. 45, no. 5, pp. 714–723, 2010, doi: 10.1016/j.procbio.2010.01.008. DOI: https://doi.org/10.1016/j.procbio.2010.01.008
  44. M. A. M. Reis, L. S. Serafim, P. C. Lemos, A. M. Ramos, F. R. Aguiar, and M. C. M. van Loosdrecht, “Production of polyhydroxyalkanoates by mixed microbial cultures,” Bioprocess and Biosystems Engineering, vol. 25, no. 6, pp. 377–385, 2003, doi: 10.1007/s00449-003-0322-4. DOI: https://doi.org/10.1007/s00449-003-0322-4
  45. V. Pham, M. Holtzapple, and M. El-Halwagi, “Techno-economic analysis of biomass to fuel conversion via the MixAlco process,” Journal of Industrial Microbiology and Biotechnology, vol. 37, no. 11, pp. 1157–1168, 2010, doi: 10.1007/s10295-010-0763-0. DOI: https://doi.org/10.1007/s10295-010-0763-0
  46. S. Haruta, Z. Cui, Z. Huang, M. Li, M. Ishii, and Y. Igarashi, “Construction of a stable microbial community with high cellulose-degradation ability,” Applied Microbiology and Biotechnology, vol. 59, no. 4–5, pp. 529–534, 2002, doi: 10.1007/s00253-002-1026-4. DOI: https://doi.org/10.1007/s00253-002-1026-4
  47. J. Y.-T. K. Ming-Ju Chen, Kreuter, “Influence of the pH on (Open) Mixed Culture Fermentation of Glucose: A Chemostat Study,” Journal of anatomy, vol. 189, no. 3, pp. 503–505, 1996, doi: 10.1002/bit.
  48. M. F. Temudo, T. Mato, R. Kleerebezem, and M. C. M. van Loosdrecht, “Xylose anaerobic conversion by open-mixed cultures,” Applied Microbiology and Biotechnology, vol. 82, no. 2, pp. 231–239, 2009, doi: 10.1007/s00253-008-1749-y. DOI: https://doi.org/10.1007/s00253-008-1749-y
  49. S. Brethauer and M. H. Studer, “Consolidated bioprocessing of lignocellulose by a microbial consortium”, Energy and Environmental Science, vol. 7, no. 4, pp. 1446–1453, 2014, doi: 10.1039/c3ee41753k. DOI: https://doi.org/10.1039/c3ee41753k

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.