ESTABILIDAD TÉRMICA DE GRUPOS FUNCIONALES EN ACEITES VEGETALES ANALIZADOS MEDIANTE ESPECTROSCOPIA INFRARROJA
Abstract
La sobreexposición térmica en aceites vegetales provoca cambios fisicoquímicos en sus grupos funcionales. Este estudio tuvo como objetivo monitorear la estabilidad térmica de dichos grupos en aceites de girasol, oliva y soya, utilizando espectroscopia infrarroja con transformada de Fourier (FTIR) y quimiometría. Los aceites fueron calentados durante 27 horas a 250±0,5°C, tomando alícuotas en intervalos de 5, 9, 23 y 27 horas. Se analizaron los aceites mediante FTIRATR (reflectancia total atenuada) en un rango de 4000 a 600 cm-1, evaluando las áreas bajo la curva de los grupos funcionales clave. Los resultados mostraron oxidación visible a través de cambios de color. El aceite de oliva experimentó mayor degradación y oxidación, con una similitud del 31,86% en comparación con los otros aceites. El aceite de girasol y soya mostraron una similitud que aumentó de 57,74% a 78,58% tras el tratamiento térmico. En general, la exposición prolongada a altas temperaturas causó la degradación fisicoquímica y organoléptica de los aceites, con pérdida de enlaces cis, aumento de enlaces trans y posible oxidación del ácido docosahexaenoico, reflejando la vulnerabilidad de estos aceites a la oxidación y degradación bajo sobrecalentamiento.
Keywords
aceite vegetal, estabilidad, espectroscopia infrarroja FTIR, grupos funcionales, quimiometria
References
- S. Durán, J. Torres, and L. Sanhueza, “Aceites vegetales de uso frecuente en Sudamérica: características y propiedades,” 2015, Accessed: Oct. 08, 2022. [Online]. Available: https://scielo.isciii.es/pdf/nh/v32n1/04revision02.pdf
- G. Pons, “Aceites vegetales, hacia una producción sostenible,” vol. 46, 2015.
- T. Foster et al., “Food biotechnology,” Curr. Opin. Chem. Eng., vol. 30, pp. 53–59, Dec. 2020, doi: 10.1016/J.COCHE.2020.08.006.
- A. A. AbuGhazaleh and L. D. Holmes, “Diet supplementation with fish oil and sunflower oil to increase conjugated linoleic acid levels in milk fat of partially grazing dairy cows,” J. Dairy Sci., 2007, doi: 10.3168/jds.2006-684.
- E. Eder et al., “Oxidative stress related DNA adducts in the liver of female rats fed with sunflower-, rapeseed-, olive- or coconut oil supplemented diets,” Chem. Biol. Interact., 2006, doi: 10.1016/j.cbi.2005.09.004.
- A. M. O. Rauen-Miguel, W. Esteves, and D. Barrera-Arellano, “Determinación del período de inducción de aceite de soja - Correlación entre el Rancimat y otros índices,” Grasas y Aceites, 1992, doi: 10.3989/gya.1992.v43.i3.1162.
- R. Jamwal et al., “Recent trends in the use of FTIR spectroscopy integrated with chemometrics for the detection of edible oil adulteration,” Vib. Spectrosc., vol. 113, p. 103222, Mar. 2021, doi: 10.1016/J.VIBSPEC.2021.103222.
- L. Mitrea et al., “The physicochemical properties of five vegetable oils exposed at high temperature for a short-time-interval,” J. Food Compos. Anal., vol. 106, p. 104305, Mar. 2022, doi: 10.1016/J.JFCA.2021.104305.
- M. I. Valdez, “Determinación de ácidos grasos trans en papas fritas industriales y de expendio ambulatorio mediante espectrometría infrarroja FTIR,” 2017.
- A. Rohman, Y. B. Che Man, P. Hashim, and A. Ismail, “FTIR spectroscopy combined with chemometrics for analysis of lard adulteration in some vegetable oils,” CYTA - J. Food, vol. 9, no. 2, pp. 96–101, Aug. 2011, doi: 10.1080/19476331003774639/SUPPL_FILE/TCYT_A_477985_SUP_19165210.PDF.
- R. Jamwal et al., “Rapid and non-destructive approach for the detection of fried mustard oil adulteration in pure mustard oil via ATR-FTIR spectroscopy-chemometrics,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 244, p. 118822, Jan. 2021, doi: 10.1016/J.SAA.2020.118822.
- Q. Ye and X. Meng, “Highly efficient authentication of edible oils by FTIR spectroscopy coupled with chemometrics,” Food Chem., 2022, doi: 10.1016/j.foodchem.2022.132661.
- N. Salamah, C. D. Cantika, L. H. Nurani, and A. Guntarti, “Authentication of citrus peel oils from different species and commercial products using FTIR Spectroscopy combined with chemometrics,” Pharmacia, vol. 71, pp. 1–7, Jan. 2024, doi: 10.3897/PHARMACIA.71.E118789.
- I. Martín-Cabrejas and E. Goicoechea-Oses, “Effect of garlic essential oil on sunflower oil oxidative stability during accelerated storage studied by FTIR spectroscopy,” Food Biosci., vol. 62, p. 105012, Dec. 2024, doi: 10.1016/J.FBIO.2024.105012.
- H. Li et al., “Repurposing waste oils into cleaner aged asphalt pavement materials: A critical review,” J. Clean. Prod., vol. 334, p. 130230, Feb. 2022, doi: 10.1016/J.JCLEPRO.2021.130230.
- A. Valenzuela, J. Sanhueza, S. Nieto, G. Petersen, and M. Tavella, “Estudio comparativo, en fritura, de la estabilidad de diferentes aceites vegetales,” Aceites y grasas, 2003, Accessed: Oct. 08, 2022. [Online]. Available: https://www.researchgate.net/publication/238742503
- D. Dodoo et al., “Quality evaluation of different repeatedly heated vegetable oils for deep-frying of yam fries,” Meas. Food, vol. 7, p. 100035, Sep. 2022, doi: 10.1016/J.MEAFOO.2022.100035.
- F. Rexhepi, A. Surleva, A. Hyseni, M. Bruçi, and B. Kodraliu, “Comprehensive Investigation of Thermal Degradation Characteristics and Properties Changes of Plant Edible Oils by FTIR-Spectroscopy,” Acta Chem. Iasi, vol. 27, no. 2, pp. 263–286, 2019, doi: 10.2478/achi-2019-0017.
- H. Vaskova and M. Buckova, “Thermal Degradation of Vegetable Oils: Spectroscopic Measurement and Analysis,” Procedia Eng., vol. 100, no. January, pp. 630–635, Jan. 2015, doi: 10.1016/J.PROENG.2015.01.414.
- A. Rohman, Y. B. Che, Y. B. Che, M. Aplicación, and D. Ftir, “Aplicación de espectroscopía FTIR para monitorear las estabilidades de aceites vegetales seleccionados durante oxidación térmica,” vol. 2912, 2013, doi: 10.1080/10942912.2011.
- G. Cakmak-Arslan, “Monitoring of Hazelnut oil quality during thermal processing in comparison with extra virgin olive oil by using ATR-FTIR spectroscopy combined with chemometrics,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 266, p. 120461, Feb. 2022, doi: 10.1016/J.SAA.2021.120461.
- H. Y. Lam, P. K. Roy, and S. Chattopadhyay, “Thermal degradation in edible oils by surface enhanced Raman spectroscopy calibrated with iodine values,” Vib. Spectrosc., vol. 106, p. 103018, Jan. 2020, doi: 10.1016/J.VIBSPEC.2019.103018.
- J. Sanz, “Estudio y desarrollo de sensores ópticos para la monitorización de compuestos volátiles generados durante la degradación térmica de aceites de consumo,” 2017. Accessed: Oct. 08, 2022. [Online]. Available: https://zaguan.unizar.es/record/61953/files/TESIS-2017-081.pdf?version=1
- D. Nelson and M. Cox, Principles of biochemestry. 2004. Accessed: Oct. 08, 2022. [Online]. Available: http://aulanni.lecture.ub.ac.id/files/2012/01/15616949-Lehninger-Principles-of-Biochemistry-1-copy.pdf
- A. Soni, M. Yusuf, V. K. Mishra, and M. Beg, “An assessment of thermal impact on chemical characteristics of edible oils by using FTIR spectroscopy,” Mater. Today Proc., Jun. 2022, doi: 10.1016/J.MATPR.2022.05.568.
- S. Randhawa and T. Mukherjee, “Effect of containers on the thermal degradation of vegetable oils,” Food Control, vol. 144, p. 109344, Feb. 2023, doi: 10.1016/J.FOODCONT.2022.109344.
- B. P. Mahanta, P. K. Bora, P. Kemprai, G. Borah, M. Lal, and S. Haldar, “Thermolabile essential oils, aromas and flavours: Degradation pathways, effect of thermal processing and alteration of sensory quality,” Food Res. Int., vol. 145, p. 110404, Jul. 2021, doi: 10.1016/J.FOODRES.2021.110404.
- A. M. Jiménez-Carvelo, M. T. Osorio, A. Koidis, A. González-Casado, and L. Cuadros-Rodríguez, “Chemometric classification and quantification of olive oil in blends with any edible vegetable oils using FTIR-ATR and Raman spectroscopy,” LWT, vol. 86, pp. 174–184, Dec. 2017, doi: 10.1016/J.LWT.2017.07.050.
- T. A. do Nascimento, T. I. B. Lopes, C. E. D. Nazario, S. L. Oliveira, and G. B. Alcantara, “Vegetable oils: Are they true? A point of view from ATR-FTIR, 1H NMR, and regiospecific analysis by 13C NMR,” Food Res. Int., vol. 144, p. 110362, Jun. 2021, doi: 10.1016/J.FOODRES.2021.110362.
- G. Ozulku, R. M. Yildirim, O. S. Toker, S. Karasu, and M. Z. Durak, “Rapid detection of adulteration of cold pressed sesame oil adultered with hazelnut, canola, and sunflower oils using ATR-FTIR spectroscopy combined with chemometric,” Food Control, vol. 82, pp. 212–216, Dec. 2017, doi: 10.1016/J.FOODCONT.2017.06.034.
- I. Z. Rakhmatullin et al., “Application of high resolution NMR (1H and 13C) and FTIR spectroscopy for characterization of light and heavy crude oils,” J. Pet. Sci. Eng., vol. 168, pp. 256–262, Sep. 2018, doi: 10.1016/J.PETROL.2018.05.011.