Skip to main navigation menu Skip to main content Skip to site footer

Zeolitas Sódicas y Potásicas a partir de Cenizas Volantes Provenientes de la Combustion del Carbón de la Termoeléctrica Termotasajero S.A.S

Abstract

Las Cenizas volantes (CV) de Termotasajero S.A.S, son un residuo de la combustion del carbón con alto impacto ambiental sobre el aire, el agua, el suelo y los ecosistemas. Poseen un alto contenido en Si y Al, lo que las convierte en un subproducto óptimo para la producción de zeolitas. Las CV se tamizaron y lixiviaron con el objeto de producir zeolitas de alta pureza. La síntesis se efectuó mediante el método de hidrogel en activación con álcalis de NaOH-2M y KOH-5M, cristalización de 2h y 3h recíprocamente, a 90 °C y 560 rpm. Las zeolitas sódicas y potásicas presentaron relación Si/Al igual a 1,19 y 1,00 respectivamente, las cuales se clasificaron como zeolitas del grupo filipsita, faujasita y analcima de acuerdo a su relación Si/Al. En el producto zeolítico se identificaron que los elementos principales son Si, Al, O, Na, K, Ca, Fe, y en proporciones menores Ti y Mg, con morfología irregular de microcristales con tamaños de partículas inferiores a 12 micrómetros (µm). El análisis de Capacidad de Intercambio Catiónico (CIC) deja en evidencia el poder iónico del material, encontrándose que el mayor valor (141 meq/100g) corresponde a las zeolitas activadas con NaOH.

Keywords

Cenizas Volantes, Método de Hidrogel, Síntesis, Zeolitas

PDF (Español)

References

[1] Peña, G., y Ortega, L, “Caracterización Morfológica y Estructural de Polvos de Cenizas Volantes” [online]. I2+D, 14(2), 14-19, 2014. Disponible en: Dialnet-CaracterizacionMorfologicaYEstructuralDePolvosDeCe-6096183.pdf.

[2] Centro de Estudios y Experimentación de Obras Públicas, “Cenizas volantes de carbón y cenizas de hogar o escorias (3.1)” [online]. 2011. Disponible en: http://www.cedex.es/NR/rdonlyres/B01FDCCB-AC8E-4089-9699-FA6413FBEE7C/119905/CENIZASVOLANTESDECARBONYCENIZASDEHOGAR.pdf.

[3] Calleja, A, “La Importancia de las Zeolitas” [online]. Revista cuadernos tomas, CT (1), 211-227, 2009. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=3760692.

[4] Farro, N., Reyes, W., Díaz, J., Mendoza, J., Chuquimango, B., y Araujo, C, “Influencia de la proporción de hidróxido de sodio a cenizas volátiles en la obtención de zeolitas para purificar efluentes acuosos contaminados con metales pesados” [online]. Revista Ciencia y Tecnología, (3), 127-140, 2015. Disponible en: http://revistas.unitru.edu.pe/index.php/PGM/article/view/1120/1046.

[5] Gómez, J. Síntesis, caracterización y aplicaciones catalíticas de zeolitas básicas. Universidad Complutense de Madrid. Madrid, España, 2001.

[6] González, D., Pérez, L., Santa, A., y Ramírez, J, “Producción y caracterización de zeolita obtenida a partir de ceniza volante mediante drx” [online]. MOMENTO Revista de Física, (48), 52-60, 2014. Disponible en: http://www.bdigital.unal.edu.co/44963/1/45542-219568-2-PB.pdf.

[7] Hernández, J., González, J., Carruyo, G., y García, C, “Lixiviación diferenciada de metales mayoritarios de cenizas volantes” [online]. Revista Tecnocientífica URU, (9), 19-31, 2015. Disponible en: http://200.35.84.134/ojs-2.4.2/index.php/rtcu/article/viewFile/294/pdf_17.

[8] Chica F., Londoño, L., y Álvarez, M, “La zeolita en la mitigación ambiental” [online]. Revista Lasallista de Investigación, 3(1), 2006. Disponible en: http://www.redalyc.org/articulo.oa?id=69530106.

[9] Guía Técnica Colombiana GTC, 35, 1997.

[10] Martínez, D., & Cicuamía A, Síntesis y caracterización de zeolitas a partir de cenizas volantes de carbón. Universidad de Ciencias Aplicadas y Ambientales. Bogotá, Colombia, 2016.

[11] Norma ASTM: C 117-03 Standard Test Method for Materials Finer than 75-µm (No. 200) Sieve in Mineral Aggregates by Washing.

[12] Velásquez, L.F., De la Cruz, J.F., Sánchez, J.F., y Marín, M.A, “Remoción de Carbón Inquemado de las Cenizas Volantes Producidas en el Proceso de Combustión de Carbón” [online]. Revista Energética, (38), 107-112, 2007. Disponible en: https://revistas.unal.edu.co/index.php/energetica/article/viewFile/9508/10105.

[13] Saavedra, M.L., Cuevas, D., Saldivia, M., y Santoro, R, “Remoción de iones Cromo y Cobre desde soluciones acuosas con cenizas volantes de Carbón mineral” [online]. Revista de la Facultad de Ciencias Químicas, (12), 10-19, 2015. Disponible en: http://dspace.ucuenca.edu.ec/bitstream/123456789/23871/1/2_articulo_revista_12.pdf.
[14] Harja, M., Bucur, D., Cimpeanu, S.M., Ciocinta, R.C., y Gurita, A.A, “Conversion of ash on zeolites for soil application” [online]. WFL Publisher Science and Technology, 10(2), 1056-1059, 2012. Disponible en: https://www.researchgate.net/publication/227339645_Conversion_of_ash_on_zeolites_for_soil_application.

[15] Shoumkova, A., Stoyanova, V., Tsacheva, T., y Avdeev, G, “Comparative Study on the Zeolitization of Coal Fly Ash from TPP “Maritsa 3” with KOH and NaOH” [online]. Ecology and Environmental Protection, 159-166, 2016. Disponible en: https://www.researchgate.net/publication/268402487.

[16] Jiménez, M, J, Caracterización de Minerales Zeolíticos mexicanos. Universidad Autónoma del Estado de México. Toluca, México, 2004.

[17] Bhagwanjee, J., Padmakumar, G., Singh, D., y Kannan, I, “Synthesis of zeolites by fly ash alkali interaction” [online]. Indian Geotechnical Conference, Kochi (R-243), 1089-1092, 2001. Disponible en: https://gndec.ac.in/~igs/ldh/conf/2011/articles/Theme%20-%20R%205.pdf.

[18] Benavides, P., & Mendoza, E, Síntesis de zeolitas a partir de cenizas de carbón provenientes de la combustión de la termoeléctrica de Zipaquirá. Universidad Industrial de Santander. Bucaramanga, Colombia, 2007.

[19] Martínez, J, Obtención de Zeolitas Utilizando Líquidos Iónicos como Agentes Directores de Estructura. Universidad de Sevilla. Sevilla, España, 2015.

[20] Yuncosa, R, Síntesis y Caracterización de Zeolita y Mediante Calentamiento por Microondas. Universidad Central de Venezuela. Caracas, Venezuela, 2008.

[21] Jha, B., y Narain, D. (Eds), “Fly Ash Zeolites”. 2016. doi: 10.1007/978-981-10-1404-8.

[22] Arroyave, J.C., Arboleda, J.C., Hoyos, D.A., y Echavarría, A.P, “LTA and FAU zeolites from coal combustion and residue by products for Chromium removal application”. DYNA, 85(204), 150-160, 2017. http://dx.doi.org/10.15446/dyna.v85n204.67096.

[23] Hai, S., Hu Sik, K., Sung, M.S., Seong, O.K., Jeong, M.S., Ghyung, H.K., y Woo, T.L, “Location of Na+ Ions in Fully Dehydrated Na+-saturated Zeolite Y (FAU, Si/Al = 1.56)” [online], Bull Korean Chem Soc, 33(8), 2785-2788, 2012. Disponible en: http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=JCGMCS_2012_v33n8_2785.

[24] Flores, C.G., Schneider, H., Marcilio, N.R., Ferret, L., y Pinto, J.C, “Potassic zeolites from Brazilian coal ash for use as a fertilizer in agricultura”. ELSEIVER, (2017), 1-9, 2017. http://dx.doi.org/10.1016/j.wasman.2017.08.039.

[25] Mosqueda, D.B, “Estudios de Zeolitas Naturales y Modificadas para su Utilización como Catalizadores de Control Ambiental-Edicion Única”. Instituto Tecnológico y de Estudios Superiores de Monterrey. Monterrey, México, 1997.

[26] Kunecki, P., Panek, R., Wdowin. M., y Franus, W, “Synthesis of faujasite (FAU) and tschernichite (LTA) type zeolites as a potential direction of the development of lime class C fly ash”. International Journal of Mineral Processing, 2017. http://dx.doi.org/10.1016/j.minpro.2017.07.007.

[27] Chen, J., Ma, H., Liu, C., y Yuan J, “Synthesis of Analcime Crystals and Simultaneous Potassium Extraction from Natrolite Syenite”. Hindawi, 2017, 1-9, 2017. https://doi.org/10.1155/2017/2617597.

[28] Barbosa, A., Barbosa, A., Santos, E., Leite, R., Rodrigues, M, “Obtención de la Zeolitas MCM-22 a través de la Síntesis Hidrotermal Utilizando Diferentes Métodos” [online]. Avances en Ciencias e Ingenieria, 3(3), 59-67, 2012. Disponible en: http://www.redalyc.org/pdf/3236/323627687007.pdf

[29] Murayama, N., Takahashi, T., Shuku., K., Lee, H., y Shibata, J, “Effect of reaction temperature on hydrothermal Syntheses of potassium type zeolites from coal fly ash”. ELSEIVER, 87(2008), 129-133, 2008. doi:10.1016/j.minpro.2008.03.001.

[30] Fukasawa, T., Horigome, A., Tsu, T., Karisma, A.D., Maeda, N., Huang, A., y Fukui, K, “Utilization of incineration fly ash biomass power plants for zeolite Synthesis from coal fly ash hydrothermal treatment”. ELSEIVER, 167(2017), 92-98, 2017. http://dx.doi.org/10.1016/j.fuproc.2017.06.023.

[31] Baek, W., Ha, S., Hong, S., Kim S., y Kim, Y, “Cation exchange of cesium and cation selectivity of natural zeolites: Chabazite, stilbite, and heulandite”. ELSEIVER, 624(2018), 159-166, 2018. https://doi.org/10.1016/j.micromeso.2018.01.025.

[32] Auerbach, S.M., Carrado, K.A., y Dutta, P.K, “Handbook of Zeolite Science and Technology”. New York, Estados Unidos. Editorial Taylor & Francis Group, 2003.

[33] Arango, N., Pérez, J., Gochi, Y., y Sánchez, M, “Zeolitas a partir de cenizas volantes generadas en las centrales carboeléctricas para el tratamiento de agua contaminada con Mn y Pb” [online]. Tecnología, Ciencia, Educación, 26(1), 5-13, 2011. Disponible en: http://www.redalyc.org/articulo.oa?id=48219771002.
[34] Costafreda, J, Tectosilicatos con Características Especiales: Las Zeolitas Naturales. Escuela Técnica Superior de Ingenieros de Minas y Energía. Madrid, España, 2014.

[35] Oviedo, J., Henao, J., y Ríos, C, “A Comparative Study on Conversion of Industrial Coal by-Products in Low SiO2 Zeolite of Faujasite Type” [online]. Dyna, 79(176), 105-114, 2012. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/26220/43555.

[36] Reinoso, D., Adrover, M., y Pedernera, M, “Green Synthesis of Nanocrystalline Faujasite Zeolite”. Ultrasonics Sonochemistry, 2017. https://doi.org/10.1016/j.ultsonch.2017.11.034.

[37] Sung, M.S., Ghyung, H.K., Seok, H.L., y Woo, T.L, “Synthesis of Fully Dehydrated Partially Cs+-exchange Zeolite Y (FAU, Si/Al = 1.56), |Cs45Na30|[Si117Al75O384]-FAU and Its Single-crystal Structure” [online]. Bull Korean Chem Soc, 30(6), 1285-1292, 2009. Disponible en: https://www.researchgate.net/publication/43511894_Synthesis_of_Fully_Dehydrated_Partially_Csexchanged_Zeolite_Y_FAU_SiAl156_vertical_bar_Cs45Na30_vertical_bar_Si117Al75O384-FAU_and_Its_Single-crystal_Structure.

[38] Churl, H.C., Jeong. G.Y., Joon, S.K., Young, S.A., Moon, H.H., Yong, H.K y Sang, H.H, “Secondary Growth of Sodium type Faujasite Zeolite Layers on a Porous α-Al2O3 Tube and the CO2/N2 Separation” [online]. ResearchGate, 326-335, 2015. Disponible en: https://www.researchgate.net/profile/Churl_Hee_Cho/publication/267781515_Secondary_Growth_of_Sodium_type_Faujasite_Zeolite_Layers_on_a_Porous_a-Al_2_O_3_Tube_and_the_CO_2_N_2_Separation/links/54f960b60cf28d6deca4484d/Secondary-Growth-of-Sodium-type-Faujasite-Zeolite-Layers-on-a-Porous-a-Al-2-O-3-Tube-and-the-CO-2-N-2-Separation.pdf.

[39] Losada, L., Constanza, N., Chica, R., Hernando, J., y Salamanca M, “Estudio Preliminar de la Capacidad de Remoción de Iones Inorgánicos de una Zeolita Sintética Tipo Faujasita”. Revista Facultad de Ciencias Básicas, 11(2), 114-123, 2015. http://dx.doi.org/10.18359/rfcb.1300.

[40] Torres, N., y Torres, J, “Using Spent Fluid Catalytic Cracking (FCC) Catalyst as Pozzolanic Addition” [online]. Ingeniería e Investigación, 30(2), 35-42, 2010. Disponible en: http://www.redalyc.org/articulo.oa?id=64316114004.

[41] Niño, V., Castillón, Y., Ríos, C., y Vargas, L, “Application of faujasite synthesized from illite to the removal of Cr3+ and Ni2+ from electroplating wastewate” [online]. Rev. Ion, 26(2), 7-16, 2013. Disponible en: http://revistas.uis.edu.co/index.php/revistaion/article/view/3763.

[42] Ibrahim, K.M., y Jbara, H.A, “Removal of Paraquat from Synthetic Wastewater Using Phillipsite-Faujasite Tuff from Jordan”. Journal of Hazardous Materials. 163(2009), 82-85, 2008. 10.1016/j.jhazmat.2008.06.109.
[43] Colella, A., Gennaro, B., Salvestrini, S, y Colella, C, “Surface interaction of humic acids with natural and synthetic phillipsite” Springer, 22(2015), 501-509, 2015. doi: 10.1007/s10934-015-9920-1.

[44] Bampaiti, A., Misaelides, P., y Noli, F, “Uranium removal from aqueous solutions using a raw and HDTMA-modifiedphillipsite-bearing tuff”. Springer, 2014. doi: 10.1007/s10967-014-3796-4.

[45] Jin, H., Junsheng, Y., Jia, X., Yunpeng, F, y Chunxia, M, “Template-free Synthesis and characterization of K-phillipsite for use in potassium extraction from seawater”. ELSEIVER, (2013). http://dx.doi.org/10.1016/j.partic.2013.02.003.

[46] Passaglia, E., y Laurora, A, “NH4 exchange in chabazite, heulandite–clinoptilolite, and phillipsite”. Springer, 24(2013), 369-376, 2013. doi: 10.1007/s12210-013-0257-x.

[47] Worathanakul, P., Kittipalarak, S., y Anusarn, K, “Utilization Biomass from Bagasse Ash for Phillipsite Zeolite Synthesis”. Advanced Materials Research, 383-393(2012), 4038-4042, 2011. doi:10.4028/www.scientific.net/AMR.383-390.4038.

[48] Vereshchagina, T.A., Kutikhina, E.A., Solovyov, L.A., Vereshchagin, S.N., Mazurova, E.V., Chernykh, Y.Y., y Anshits, A.G, “Synthesis and Structure of analcime and analcime-zirconia composite derived from coal fly ash cenospheres”. ELSEIVER, 258(2018), 228-235, 2017. https://doi.org/10.1016/j.micromeso.2017.09.011.

[49] Prapainainar, P., Du, Z., Kongkachuichay, P., Holmes, S.M., y Prapainainar, C, “Mordenite/Nafion and analcime/Nafion composite membranes prepared by spray Method for improved direct methanol fuel cell performance”. ELSEIVER, (2017), 1-18, 2017. http://dx.doi.org/10.1016/j.apsusc.2017.02.004.

[50] Hsiao, Y., Ho, T., Shen, Y., y Ray, D, “Synthesis of analcime from sericite and pyrophyllite by microwave-assisted hydrothermal processes”. ELSEIVER, 143(2017), 378-386, 2017. http://dx.doi.org/10.1016/j.clay.2017.04.014.

[51] Tilami, S.E., y Azizi, S.N, “Methionine templated analcime for enhancing heavy metal adsorption”. ScienceAsia, 43(2017), 42-46, 2017. doi: 10.2306/scienceasia1513-1874.2017.43.042.

[52] Azizi, S.N., Ghasemi, S., y Derakhshani, M, “The Synthesis of analcime zeolite nanoparticles using Silica extracted from stem of sorghum Halepenesic ash and their application as support for electrooxidation of formaldehyde”. ELSEIVER, (2016), 1-12, 2016. http://dx.doi.org/10.1016/j.ijhydene.2016.08.181.

[53] Kumar, R.V., Kumar, A., Kumar, A., y Pugazhenthi, G, “Performance assessment of an analcime-C zeolite-ceramic composite membrane by removal of Cr (VI) from aqueous solution”. The Royal Society of Chemistry, 5(2015), 6246-6254, 2014. doi: 10.1039/c4ra14527e.

Downloads

Download data is not yet available.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.