Catalizadores magnéticos basados en Óxidos de Hierro: Síntesis, Propiedades y Aplicaciones

Autores/as

  • Angélica M. Escobar Universidad Nacional de la Plata-Argentina
  • Luis R. Pizzio Universidad Nacional de la Plata-Argentina
  • Gustavo P. Romanelli Universidad Nacional de la Plata-Argentina

DOI:

https://doi.org/10.19053/01217488.v10.n1.2019.8811

Palabras clave:

Nanopartículas magnéticas, óxidos de hierro, catálisis heterogénea.

Resumen

Esta revisión se centra en las propiedades magnéticas, estructura, síntesis y aplicación como catalizadores de las nanopartículas magnéticas de óxidos de hierro. En los últimos años son muchos los avances logrados respecto a su síntesis, control del tamaño y forma, donde se destacan métodos como la co-precipitación, microemulsión, síntesis hidrotermal y solvotermal, entre muchas otras. Pero debido a que las nanoparticulas de óxidos de hierro son fácilmente oxidables por el medio amiente y por medios ácidos, se ve la necesidad de recubrirlas o protegerlas con materiales no magnéticos que en muchos casos funcionan también como sustancias funcionalizadoras a las cuales se une la fase activa. Así, es amplio el abanico de posibilidades de sustancias y compuestos protectores, tales como óxidos inorgánicos, polímeros y metales, al igual las técnicas  para su funcionalización. Las nanopartículas magnéticas una vez funcionalizadas pueden usarse como bloques de construcción para la fabricación de una gran variedad de sistemas catalíticos, y en este trabajo se revisará brevemente algunos de estos sistemas y su aplicación en diferentes procesos como reacciones de Síntesis Orgánica, fotocatálisis y eliminación de metales y otras sustancias en aguas residuales, por citar algunos ejemplos. Finalmente, se delinearán algunas tendencias y perspectivas futuras en estas áreas de investigación.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Tudu B, Tiwari A (2017) Recent Developments in Perpendicular Magnetic Anisotropy Thin Films for Data Storage Applications. Vacuum 146:329–341. https://doi.org/10.1016/j.vacuum.2017.01.031

[2] Kurlyandskaya GV, Novoselova IP, Schupletsova VV, et al (2017) Nanoparticles for magnetic biosensing systems. J Magn Magn Mater 431:249–254. https://doi.org/10.1016/j.jmmm.2016.07.056

[3] Yusuf SM (2012) Functional Magnetic Materials: Fundamental and Technological Aspects. In: Functional Materials. Elsevier, pp 111–154

[4] Nerimetla R, Premaratne G, Liu H, Krishnan S (2018) Improved electrocatalytic metabolite production and drug biosensing by human liver microsomes immobilized on amine-functionalized magnetic nanoparticles. Electrochim Acta 280:101–107. https://doi.org/10.1016/j.electacta.2018.05.085

[5] Tan KA, Morad N, Teng TT, et al (2012) Removal of Cationic Dye by Magnetic Nanoparticle (Fe3O4) Impregnated onto Activated Maize Cob Powder and Kinetic Study of Dye Waste Adsorption. APCBEE Procedia 1:83–89. https://doi.org/10.1016/j.apcbee.2012.03.015

[6] Tang SCN, Lo IMC (2013) Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res 47:2613–2632. https://doi.org/10.1016/j.watres.2013.02.039

[7] Carmona-Carmona AJ, Palomino-Ovando MA, Hernández-Cristobal O, et al (2017) Synthesis and characterization of magnetic opal/Fe3O4 colloidal crystal. J Cryst Growth 462:6–11. https://doi.org/10.1016/j.jcrysgro.2016.12.105

[8] Song S, Yang H, Rao R, et al (2010) High catalytic activity and selectivity for hydroxylation of benzene to phenol over multi-walled carbon nanotubes supported Fe3O4 catalyst. Appl Catal A Gen 375:265–271. https://doi.org/10.1016/j.apcata.2010.01.008

[9] Rafiee E, Khodayari M (2016) Starch as a green source for Fe3O4@carbon core-shell nanoparticles synthesis: A support for 12-tungstophosphoric acid, synthesis, characterization, and application as an efficient catalyst. Res Chem Intermed 42:3523–3536. https://doi.org/10.1007/s11164-015-2229-5

[10] Zhang Z, Zhang F, Zhu Q, et al (2011) Magnetically separable polyoxometalate catalyst for the oxidation of dibenzothiophene with H2O2. J Colloid Interface Sci 360:189–194. https://doi.org/10.1016/j.jcis.2011.04.045

[11] Eshghi H, Khojastehnezhad A, Moeinpour F, et al (2014) Synthesis, characterization and first application of keggin-type heteropoly acids supported on silica coated NiFe2O4 as novel magnetically catalysts for the synthesis of tetrahydropyridines. RSC Adv 4:39782. https://doi.org/10.1039/C4RA05133E

[12] Khosroshahi ME, Ghazanfari L (2010) Preparation and characterization of silica-coated iron-oxide bionanoparticles under N2 gas. Phys E Low-Dimensional Syst Nanostructures 42:1824–1829. https://doi.org/10.1016/j.physe.2010.01.042

[13] Sohn BH, Cohen RE (1997) Processible Optically Transparent Block Copolymer Films Containing Superparamagnetic Iron Oxide Nanoclusters. Chem Mater 9:264–269. https://doi.org/10.1021/cm960339d

[14] Robinson PJ, Dunnill P, Lilly MD (1973) The properties of magnetic supports in relation to immobilized enzyme reactors. Biotechnol Bioeng 15:603–606. https://doi.org/10.1002/bit.260150318

[15] Whitesides GM, Hill CL, Brunie JC (1976) Magnetic Filtration of Small Heterogeneous Catalyst Particles. Preparation of Ferrimagnetic Catalyst Supports. Ind Eng Chem Process Des Dev 15:226–227. https://doi.org/10.1021/i260057a040

[16] Maleki B, Eshghi H, Khojastehnezhad A, et al (2015) Silica coated magnetic NiFe2O4 nanoparticle supported phosphomolybdic acid; Synthesis, preparation and its application as a heterogeneous and recyclable catalyst for the one-pot synthesis of tri- and tetra-substituted imidazoles unde. RSC Adv 5:64850–64857. https://doi.org/10.1039/C5RA10534J

[17] Dadwal A, Joy PA (2018) Influence of chain length of long-chain fatty acid surfactant on the thermal conductivity of magnetite nanofluids in a magnetic field. Colloids Surfaces A Physicochem Eng Asp 555:525–531. https://doi.org/10.1016/j.colsurfa.2018.07.034

[18] Du GH, Liu ZL, Xia X, et al (2006) Characterization and application of Fe3O4/SiO2 nanocomposites. J Sol-Gel Sci Technol 39:285–291. https://doi.org/10.1007/s10971-006-7780-5

[19] Guo W, Wang G, Wang Q, et al (2013) Journal of Molecular Catalysis A : Chemical A hierarchical Fe3O4@P4VP@MoO2(acac)2 nanocomposite : Controlled synthesis and green catalytic application. "Journal Mol Catal A, Chem 378:344–349. https://doi.org/10.1016/j.molcata.2013.04.019

[20] Sadeghzadeh SM (2015) A heteropolyacid-based ionic liquid immobilized onto Fe3O4/SiO2/Salen/Mn as an environmentally friendly catalyst for synthesis of cyclic carbonate. Res Chem Intermed. https://doi.org/10.1007/s11164-015-2151-x

[21] Warner CL, Carter TG, Wiacek RJ, Fryxell GE (2007) Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized Superparamagnetic Nanoparticles. 41:5114–5119

[22] Chi Y, Yuan Q, Li Y, et al (2012) Journal of Colloid and Interface Science Synthesis of Fe3O4@SiO2–Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. J Colloid Interface Sci 383:96–102. https://doi.org/10.1016/j.jcis.2012.06.027

[23] Amin R, Khorshidi A, Shojaei AF, et al (2018) Immobilization of laccase on modified Fe3O4@SiO2@Kit-6 magnetite nanoparticles for enhanced delignification of olive pomace bio-waste. Int J Biol Macromol 114:106–113. https://doi.org/10.1016/j.ijbiomac.2018.03.086

[24] Martínez JJ, Nope E, Rojas H, et al (2014) Dehydration of xylose to furfural and its valorization via different multicomponent reactions using sulfonated silica with magnetic properties as recyclable catalyst. Catal Letters 144:1322–1331. https://doi.org/10.1007/s10562-014-1267-8

[25] Lim CW, Lee IS (2010) Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today 5:412–434. https://doi.org/10.1016/j.nantod.2010.08.008

[26] Baig RBN, Nadagouda MN, Varma RS (2015) Magnetically retrievable catalysts for asymmetric synthesis. Coord Chem Rev 287:137–156. https://doi.org/10.1016/j.ccr.2014.12.017

[27] Mathew DS, Juang RS (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129:51–65. https://doi.org/10.1016/j.cej.2006.11.001

[28] Weiss P (1907) L’hypothèse du champ moléculaire et la propriété ferromagnétique. J Phys Théorique Appliquée 6:661–690. https://doi.org/10.1051/jphystap:019070060066100

[29] Sorensen CM (2001) Magnetism. In: Klabunde KJ (ed) Nanoscale Materials in Chemistry. John Wiley & Sons, Inc., New York, USA, p 169

[30] Paradela RP (2013) Preparación y caracterización de nanopartículas magnéticas biocompatible. Universidad de Coruña

[31] Castellanos MJR Procesos de imanación en la nanoescala mediante microscopía de fuerzas magnéticas. Universidad Autonoma de Madrid

[32] Jahagirdar AA, Dhananjaya N, Monika DL, et al (2013) Structural, EPR, optical and magnetic properties of α-Fe2O3 nanoparticles. Spectrochim Acta - Part A Mol Biomol Spectrosc 104:512–518. https://doi.org/10.1016/j.saa.2012.09.069

[33] Wells AF (1978) Química inorgánica estructural. Reverté, Barcelona

[34] Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2:23–39. https://doi.org/10.2217/17435889.2.1.23

[35] Wu W, Wu Z, Yu T, et al (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501. https://doi.org/10.1088/1468-6996/16/2/023501

[36] Bandhu A, Mukherjee S, Acharya S, et al (2009) Dynamic magnetic behaviour and M??ssbauer effect measurements of magnetite nanoparticles prepared by a new technique in the co-precipitation method. Solid State Commun 149:1790–1794. https://doi.org/10.1016/j.ssc.2009.07.018

[37] Faraji M, Yamini Y, Rezaee M (2010) Magnetic Nanoparticles: Synthesis, Stabilization, Functionalization, Characterization, and Applications. Iran Chem Soc 7:1–37

[38] Li X, Xu G, Liu Y, He T (2011) Magnetic Fe3O4 Nanoparticles : Synthesis and Application in Water Treatment. 14–24

[39] Majewski P, Thierry B (2007) Functionalized Magnetite Nanoparticles - Synthesis,Properties,and Bio-Applications. Crit Rev Solid State Mater Sci 32:203–215. https://doi.org/10.1080/10408430701776680

[40] Perez De Berti IO, Cagnoli M V, Pecchi G, et al (2013) Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors. Nanotechnology 24:175601. https://doi.org/10.1088/0957-4484/24/17/175601

[41] Babes L, Jacques J, Jeune L, Jallet P (1999) Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents : A Parametric Study. J Colloid Interface Sci 212:474–482

[42] Faiyas APA, Vinod EM, Joseph J, et al (2010) Dependence of pH and surfactant effect in the synthesis of magnetite (Fe3O4) nanoparticles and its properties. J Magn Magn Mater 322:400–404. https://doi.org/10.1016/j.jmmm.2009.09.064

[43] Shen YF, Tang J, Nie ZH, et al (2009) Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol 68:312–319. https://doi.org/10.1016/j.seppur.2009.05.020

[44] Bui TQ, Thi H, Ngo M, Tran HT (2018) Journal of Science : Advanced Materials and Devices Surface-protective assistance of ultrasound in synthesis of superparamagnetic magnetite nanoparticles and in preparation of. J Sci Adv Mater Devices 3:323–330. https://doi.org/10.1016/j.jsamd.2018.07.002

[45] Vaidya S, Science N (2018) Microemulsion Methods for Synthesis of Nanostructured Materials ☆. Elsevier Ltd.

[46] Chen AZ, Wu C, Zhang Z, Chen Z (2018) Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chinese Chem Lett. https://doi.org/10.1016/j.cclet.2018.08.007

[47] Tan TTY, Liu S, Zhang Y, et al (2011) Microemulsion Preparative Methods (Overview). In: Comprehensive Nanoscience and Technology. Elsevier, pp 399–441

[48] Zhou ZH, Wang J, Liu X, Chan HSO (2001) Synthesis of Fe3O4 nanoparticles from emulsions. https://doi.org/10.1039/b100758k

[49] Bumajdad A, Eastoe J, Zaki MI, et al (2007) Generation of metal oxide nanoparticles in optimised microemulsions. J Colloid Interface Sci 312:68–75. https://doi.org/10.1016/j.jcis.2006.09.007

[50] Feng S, Xu R (2001) New Materials in Hydrothermal Synthesis. Acc Chem Res 34:239–247. https://doi.org/10.1021/ar0000105

[51] Nemati A, Shadpour S, Khalafbeygi H, Barkhi M (2014) Hydrothermal Synthesis and Size Control of Fe3O4 Nanoparticles in the Presence of 2,2’,2”,2”′-(ethane-1,2-diylbis(azanetriyl))tetraacetohydrazide. Synth React Inorganic, Met Nano-Metal Chem 44:1161–1165. https://doi.org/10.1080/15533174.2013.797443

[52] Fu R, Wu X, Wang X, et al (2018) Low-temperature hydrothermal fabrication of Fe3O4 nanostructured solar selective absorption films. Appl Surf Sci 458:629–637. https://doi.org/10.1016/j.apsusc.2018.07.063

[53] Jiao Y, Wan C, Bao W, et al (2018) Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B. Carbohydr Polym 189:371–378. https://doi.org/10.1016/j.carbpol.2018.02.028

[54] Hernández-Hernández AA, Álvarez-Romero GA, Castañeda-Ovando A, et al (2018) Optimization of microwave-solvothermal synthesis of Fe3O4 nanoparticles. Coating, modification, and characterization. Mater Chem Phys 205:113–119. https://doi.org/10.1016/j.matchemphys.2017.11.009

[55] Deng H, Li X, Peng Q, et al (2005) Monodisperse Magnetic Single-Crystal Ferrite Microspheres. Angew Chemie Int Ed 44:2782–2785. https://doi.org/10.1002/anie.200462551

[56] Li C, Wei Y, Liivat A, et al (2013) Microwave-solvothermal synthesis of Fe3O4 magnetic nanoparticles. Mater Lett 107:23–26. https://doi.org/10.1016/j.matlet.2013.05.117

[57] Laurent S, Forge D, Port M, et al (2008) Magnetic Iron Oxide Nanoparticles : Synthesis , Stabilization , Vectorization , Physicochemical Characterizations , and Biological Applications. 2064–2110

[58] Wang D, Astruc D (2014) Fast-Growing Field of Magnetically Recyclable Nanocatalysts. https://doi.org/10.1021/cr500134h

[59] Zhang P, Wang B, Williams GR, et al (2013) Self-assembled core-shell Fe3O4@SiO2 nanoparticles from electrospun fibers. Mater Res Bull 48:3058–3064. https://doi.org/10.1016/j.materresbull.2013.04.052

[60] Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. https://doi.org/10.1016/0021-9797(68)90272-5

[61] Chae SS, Hwang BH, Jang WS, et al (2012) Homogeneous liquid crystal alignment on inorganic–organic hybrid silica thin films derived by the sol–gel method. Soft Matter 8:1437. https://doi.org/10.1039/c1sm06592k

[62] Goksu EI, Hoopes MI, Nellis BA, et al (2010) Silica xerogel/aerogel-supported lipid bilayers: Consequences of surface corrugation. Biochim Biophys Acta - Biomembr 1798:719–729. https://doi.org/10.1016/j.bbamem.2009.09.007

[63] Mariela A. Agotegaray VLL (2017) Microemulsion method. In: Silica-coated Magnetic Nanoparticles: An Insight into Targeted Drug Delivery and Toxicology. SpringerBriefs, p 42

[64] DING H, ZHAO Y, DUAN Q, et al (2017) Efficient removal of phosphate from aqueous solution using novel magnetic nanocomposites with Fe3O4@SiO2 core and mesoporous CeO2 shell. J Rare Earths 35:984–994. https://doi.org/10.1016/S1002-0721(17)61003-2

[65] Lai L, Xie Q, Chi L, et al (2016) Adsorption of phosphate from water by easily separable Fe3O4@SiO2core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide. J Colloid Interface Sci 465:76–82. https://doi.org/10.1016/j.jcis.2015.11.043

[66] Ghotbinejad M, Khosropour AR, Mohammadpoor-Baltork I, et al (2014) Ultrasound-assisted C–C coupling reactions catalyzed by unique SPION-A-Pd(EDTA) as a robust nanocatalyst. RSC Adv 4:8590. https://doi.org/10.1039/c3ra45790g

[67] Wang D, Salmon L, Ruiz J, Astruc D (2013) A recyclable ruthenium(ii) complex supported on magnetic nanoparticles: a regioselective catalyst for alkyne–azide cycloaddition. Chem Commun 49:6956. https://doi.org/10.1039/c3cc43048k

[68] Heidari F, Hekmati M, Veisi H (2017) Magnetically separable and recyclable Fe3O4@SiO2/isoniazide/Pd nanocatalyst for highly efficient synthesis of biaryls by Suzuki coupling reactions. J Colloid Interface Sci 501:175–184. https://doi.org/10.1016/j.jcis.2017.04.054

[69] Tzounis L, Logothetidis S (2017) Fe3O4@SiO2 core shell particles as platforms for the decoration of Ag nanoparticles. Mater Today Proc 4:7076–7082. https://doi.org/10.1016/j.matpr.2017.07.041

[70] Esmaeilpour M, Sardarian AR, Javidi J (2012) Schiff base complex of metal ions supported on superparamagnetic Fe3O4@SiO2 nanoparticles: An efficient, selective and recyclable catalyst for synthesis of 1,1-diacetates from aldehydes under solvent-free conditions. Appl Catal A Gen 445–446:359–367. https://doi.org/10.1016/j.apcata.2012.09.010

[`71] Esmaeilpour M, Sardarian AR, Javidi J (2014) Synthesis and characterization of Schiff base complex of Pd(II) supported on superparamagnetic Fe3O4@SiO2 nanoparticles and its application as an efficient copper- and phosphine ligand-free recyclable catalyst for Sonogashira-Hagihara coupling reactions. J Organomet Chem 749:233–240. https://doi.org/10.1016/j.jorganchem.2013.10.011

[72] Wan H, Wu Z, Chen W, et al (2015) Heterogenization of ionic liquid based on mesoporous material as magnetically recyclable catalyst for biodiesel production. J Mol Catal A Chem 398:127–132. https://doi.org/10.1016/j.molcata.2014.12.002

[73] Kim E-J, Lee C-S, Chang Y-Y, Chang Y-S (2013) Hierarchically Structured Manganese Oxide-Coated Magnetic Nanocomposites for the Efficient Removal of Heavy Metal Ions from Aqueous Systems. ACS Appl Mater Interfaces 5:9628–9634. https://doi.org/10.1021/am402615m

[74] Zhao Z, Geng C, Yang C, et al (2018) A novel flake-ball-like magnetic Fe3O4/γ-MnO2 mesoporous nano-composite: Adsorption of fluorinion and effect of water chemistry. Chemosphere 209:173–181. https://doi.org/10.1016/j.chemosphere.2018.06.104

[75] Yang Q, Song H, Li Y, et al (2017) Flower-like core-shell Fe3O4@MnO2 microspheres: Synthesis and selective removal of Congo red dye from aqueous solution. J Mol Liq 234:18–23. https://doi.org/10.1016/j.molliq.2017.03.028

[76] Tanabe K (2003) Catalytic application of niobium compounds. Catal Today 78:65–77. https://doi.org/10.1016/S0920-5861(02)00343-7

[77] Opris C, Cojocaru B, Gheorghe N, et al (2016) Lignin fragmentation over magnetically recyclable composite Co@Nb2O5@Fe3O4 catalysts. J Catal 339:209–227. https://doi.org/10.1016/j.jcat.2016.04.002

[78] Liu J, Sun B, Hu J, et al (2010) Aqueous-phase reforming of ethylene glycol to hydrogen on Pd/Fe3O4 catalyst prepared by co-precipitation: Metal–support interaction and excellent intrinsic activity. J Catal 274:287–295. https://doi.org/10.1016/j.jcat.2010.07.014

[79] Zhang R, Liu J, Li F, et al (2011) Magnetically Separable and Versatile Pd/Fe3O4 Catalyst for Efficient Suzuki Cross-Coupling Reaction and Selective Hydrogenation of Nitroarenes. Chinese J Chem 29:525–530. https://doi.org/10.1002/cjoc.201190117

[80] Shang J, Guo X, Shi F, et al (2011) N-substituted carbamates syntheses with alkyl carbamates as carbonyl source over Ni-promoted Fe3O4 catalyst. J Catal 279:328–336. https://doi.org/10.1016/j.jcat.2011.01.030

[81] Yang B, Zhang Q, Ma X, et al (2016) Preparation of a magnetically recoverable nanocatalyst via cobalt-doped Fe3O4 nanoparticles and its application in the hydrogenation of nitroarenes. Nano Res 9:1879–1890. https://doi.org/10.1007/s12274-016-1080-3

[82] Feyzi M, Hassankhani A, Rafiee HR (2013) Preparation and characterization of Cs/Al/Fe3O4 nanocatalysts for biodiesel production. Energy Convers Manag 71:62–68. https://doi.org/10.1016/j.enconman.2013.03.022

[83] Zhan J, Tian G, Jiang L, et al (2008) Superparamagnetic polyimide/γ-Fe2O3 nanocomposite films : Preparation and characterization. 516:6315–6320. https://doi.org/10.1016/j.tsf.2007.12.090

[84] Wang L, Cole M, Li J, et al (2015) Polymer grafted recyclable magnetic nanoparticles. Polym Chem 6:248–255. https://doi.org/10.1039/C4PY01134A

[85] Liu ZL, Ding ZH, Yao KL, et al (2003) Preparation and characterization of polymer-coated core – shell structured magnetic microbeads. 265:98–105. https://doi.org/10.1016/S0304-8853(03)00230-0

[86] Utkan G, Sayar F, Batat P, et al (2011) Synthesis and characterization of nanomagnetite particles and their polymer coated forms. J Colloid Interface Sci 353:372–379. https://doi.org/10.1016/j.jcis.2010.09.081

[87] Liu B, Zhang W, Yang F, et al (2011) Facile Method for Synthesis of Fe3O4@Polymer Microspheres and Their Application As Magnetic Support for Loading Metal Nanoparticles. J Phys Chem C 115:15875–15884. https://doi.org/10.1021/jp204976y

[88] Liu G, Wang H, Yang X (2009) Synthesis of pH-sensitive hollow polymer microspheres with movable magnetic core. Polymer (Guildf) 50:2578–2586. https://doi.org/10.1016/j.polymer.2009.04.002

[89] Karaca E, Şatır M, Kazan S, et al (2015) Synthesis, characterization and magnetic properties of Fe3O4 doped chitosan polymer. J Magn Magn Mater 373:53–59. https://doi.org/10.1016/j.jmmm.2014.02.016

[90] Sinha V., Singla A., Wadhawan S, et al (2004) Chitosan microspheres as a potential carrier for drugs. Int J Pharm 274:1–33. https://doi.org/10.1016/j.ijpharm.2003.12.026

[91] Naghipour A, Fakhri A (2016) Heterogeneous Fe3O4@chitosan-Schiff base Pd nanocatalyst: Fabrication, characterization and application as highly efficient and magnetically-recoverable catalyst for Suzuki-Miyaura and Heck-Mizoroki C-C coupling reactions. Catal Commun 73:39–45. https://doi.org/10.1016/j.catcom.2015.10.002

[92] Jonoobi M, Oladi R, Davoudpour Y, et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969. https://doi.org/10.1007/s10570-015-0551-0

[93] Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173. https://doi.org/10.1016/j.watres.2016.01.008

[94] Zarei S, Niad M, Raanaei H (2018) The removal of mercury ion pollution by using Fe3O4-nanocellulose: Synthesis, characterizations and DFT studies. J Hazard Mater 344:258–273. https://doi.org/10.1016/j.jhazmat.2017.10.009

[95] Izumi Y, Matsuo K, Urabe K (1983) Efficient homogeneous acid catalysis of heteropoly acid and its characterization through ether cleavage reactions. J Mol Catal 18:299–314. https://doi.org/10.1016/S0304-5102(83)80004-2

[96] Kozhevnikov I V., Matveev KI (1983) Homogeneous catalysts based on heteropoly acids (review). Appl Catal 5:135–150. https://doi.org/10.1016/0166-9834(83)80128-6

[97] Morin P, Hamad B, Sapaly G, et al (2007) Transesterification of rapeseed oil with ethanol. I. Catalysis with homogeneous Keggin heteropolyacids. Appl Catal A Gen 330:69–76. https://doi.org/10.1016/j.apcata.2007.07.011

[98] Kamiya Y, Okuhara T, Misono M, et al (2008) Catalytic chemistry of supported heteropolyacids and their applications as solid acids to industrial processes. Catal Surv from Asia 12:101–113. https://doi.org/10.1007/s10563-008-9043-7

[99] Kong A, Wang P, Zhang H, et al (2012) Applied Catalysis A : General One-pot fabrication of magnetically recoverable acid nanocatalyst, heteropolyacids/chitosan/Fe3O4, and its catalytic performance. "Applied Catal A, Gen 417–418:183–189. https://doi.org/10.1016/j.apcata.2011.12.040

[100] Nikbakht F, Heydari A, Saberi D, Azizi K (2013) Oxidation of secondary amines to nitrones using magnetically separable tungstophosphoric acid supported on silica-encapsulated γ-Fe2O3 nanoparticles. Tetrahedron Lett 54:6520–6523. https://doi.org/10.1016/j.tetlet.2013.09.090

[101] Yuan J, Yue P, Wang L (2010) A study on the magnetically supported heteropolyacid nanophase catalysts. Powder Technol 202:190–193. https://doi.org/10.1016/j.powtec.2010.04.020

[102] Zhao L, Chi Y, Yuan Q, et al (2013) Phosphotungstic acid anchored to amino-functionalized core-shell magnetic mesoporous silica microspheres: A magnetically recoverable nanocomposite with enhanced photocatalytic activity. J Colloid Interface Sci 390:70–77. https://doi.org/10.1016/j.jcis.2012.08.059

[103] Masteri-Farahani M, Movassagh J, Taghavi F, et al (2012) Magnetite-polyoxometalate hybrid nanomaterials: Synthesis and characterization. Chem Eng J 184:342–346. https://doi.org/10.1016/j.cej.2011.12.094

[104] Mohammad Ghanbari SM and MS (2018) Green Chemistry Letters and Reviews Fe3O4@SiO2@ADMPT/H6P2W18O62: a novel Wells – Dawson heteropolyacid-based magnetic inorganic – organic nanohybrid material as potent Lewis acid catalyst for the efficient synthesis of. Green Chem Lett Rev 8253:111–124. https://doi.org/10.1080/17518253.2018.1445781

[105] Tayebee R, Amini MM, Rostamian H, Aliakbari A (2014) Preparation and characterization of a novel Wells-Dawson heteropolyacid-based magnetic inorganic-organic nanohybrid catalyst H6P2W18O62/pyridino-Fe3O4 for the efficient synthesis of 1-ami. Dalt Trans 43:1550–1563. https://doi.org/10.1039/c3dt51594j

Descargas

Publicado

2018-12-27

Cómo citar

Escobar, A. M., Pizzio, L. R., & P. Romanelli, G. (2018). Catalizadores magnéticos basados en Óxidos de Hierro: Síntesis, Propiedades y Aplicaciones. Ciencia En Desarrollo, 10(1), 79–101. https://doi.org/10.19053/01217488.v10.n1.2019.8811

Número

Sección

Artículos de investigación / Research papers

Métrica