Desempeño de reactores empacados con marlo de maíz (Zea mays) en la remoción de hierro contenido en drenajes ácidos de mina
Resumen
Se evaluó la capacidad del marlo de maíz (Zea mays) para remover hierro contenido en drenajes ácidos de mina (DAM) de carbón, en reactores de lecho empacado, a escala laboratorio. Los ensayos tuvieron una fase de filtrado de efluente, a través del lecho, a un caudal de 5 mL×min-1 y un lavado de columna, con agua destilada, a fin de remover lo débilmente retenido por la biomasa. Las variables evaluadas fueron: (i) modificación del marlo con hidróxido de sodio (NaOH) o ácido cítrico (C₆H₈O₇) y (ii) concentración de hierro en el DAM de 500 ppm, 1,000 ppm y 2,000 ppm. Simultáneamente, se hicieron ensayos, bajo las mismas condiciones, pero, con lavados de agua destilada al marlo, cada 400 mL de DAM filtrado, con el fin de evitar la saturación del sistema. El efluente tratado se monitoreó mediante mediciones de pH y hierro (espectroscopia de absorción atómica). Las biomasas se caracterizaron fisicoquímicamente, al iniciar y al finalizar el proceso, mediante espectroscopia infrarroja con transformada de Fourier (FTIR). En general, el pH del DAM jugó un papel muy importante en la capacidad de remoción del metal y se obtuvo mejores porcentajes de remoción de hierro utilizando marlo modificado con NaOH, incluyendo lavados esporádicos durante el proceso.
Palabras clave
Acondicionamiento químico, adsorción, biomasa, mina de carbón, remediación.
Citas
[1] C. Lavado Meza and F. Oré Jiménez, Estudio de la biosorción de plomo divalente de soluciones acuosas usando biomasa modificada de marlo de maíz (Zea mays), vol. 82, no. 4. Sociedad Química del Perú, 2016.
[2] X. Liu, Y. Liu, Z. Jiang, H. Liu, S. Yang, and Q. Yan, “Biochemical characterization of a novel xylanase from Paenibacillus barengoltzii and its application in xylooligosaccharides production from corncobs,” Food Chem., vol. 264, no. November 2017, pp. 310–318, 2018.
[3] C. Duan et al., “Carbohydrates-rich corncobs supported metal-organic frameworks as versatile biosorbents for dye removal and microbial inactivation,” Carbohydr. Polym., vol. 222, no. July, p. 115042, 2019.
[4] Y. Dong and J. Di, “Experimental study on the treatment of acid mine drainage by modi fi ed corncob fi xed SRB sludge particles,” pp. 19016–19030, 2019.
[5] L. Luque et al., “Comparison of ethanol production from corn cobs and switchgrass following a pyrolysis ‑ based biorefinery approach,” Biotechnol. Biofuels, vol. 9, pp. 1–14, 2016.
[6] A. You, M. A. Y. Be, and I. In, “Grey water recycling with corn cob as an adsorbent Grey Water Recycling with Corn Cob as an Adsorbent,” vol. 020181, no. June, 2019.
[7] A. Hormaza, “Evaluación De La Remoción De Un Colorante Azo Sobre Tuza De Maíz Mediante Diseño Estadístico,” Rev. la Fac. Ciencias, vol. 1, no. 1, pp. 61–71, 2012.
[8] K. Canjura and J. Lemus, “Propuesta de un Sistema de Tratamiento para las Aguas Residuales provenientes de Lavaderos Públicos del Municipio de Nejapa,” 2003.
[9] P. Piboon, N. Tippayawong, and T. Wongsiriamnuay, “Densification of Corncobs Using Algae as a Binder,” C. J. Nat. Sci, vol. 16, pp. 175–182, 2017.
[10] O. Peñaranda Contreras, J. E. Perilla Perilla, and N. A. Algecira Enciso, “Revisión de la modificación química del almidón con ácidos orgánicos,” Rev. Ing. e Investig., vol. 28, no. 3, pp. 47–52, 2008.
[11] N. C. Feng, X. Y. Guo, and S. Liang, “Enhanced Cu(II) adsorption by orange peel modified with sodium hydroxide,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 20, no. SUPPL.1, pp. s146–s152, 2010.
[12] P. Goyal and S. Srivastava, “Characterization of novel Zea mays based biomaterial designed for toxic metals biosorption,” J. Hazard. Mater., vol. 172, no. June 2007, pp. 1206–1211, 2009.
[13] A. C. Morillo Coronado, Y. P. Tovar, and Y. Morillo, “Caracterización morfológica de Selenicereus megalanthus (K. Schum. ex Vaupel) Moran en la provincia de Lengupá,” Ciencia En Desarrollo, vol. 7, no. 2, pp. 23–33, 2016, doi: 10.19053/01217488.v7.n2.2016.4072.
[14] K. R. Raj, A. Kardam, and S. Srivastava, “Development of polyethylenimine modi fi ed Zea mays as a high capacity biosorbent for the removal of As ( III ) and As ( V ) from aqueous system,” Int. J. Miner. Process., vol. 122, no. Febrero 2013, pp. 66–70, 2013.
[15] R. E. Wing, “Corn fiber citrate: Preparation and ion-exchange properties,” Ind. Crops Prod., vol. 5, no. 4, pp. 301–305, 1996.
[16] K. K. Kefeni, B. B. Mamba, and T. A. M. Msagati, “Magnetite and cobalt ferrite nanoparticles used as seeds for acid mine drainage treatment,” J. Hazard. Mater., vol. 333, pp. 308–318, 2017.
[17] Y. Nleya, G. S. Simate, and S. Ndlovu, “Sustainability assessment of the recovery and utilisation of acid from acid mine drainage,” J. Clean. Prod., vol. 113, pp. 17–27, 2016.
[18] E. Peña T, A. R. Pérez R, A. J. Miranda, and J. H. Sánchez L, “Modelado de un reactor químico tipo CSTR y evaluación del control predictivo aplicando Matlab-Simulink Modeling to a CSTR reactor and evaluation of a predictive control using Matlab-Simulink,” Rev. Ing. UC, vol. 15, no. 3, pp. 97–112, 2008.
[19] J. E. Franco Cogollo and D. J. Meza Cárcamo, “Evaluación de la eficiencia de un reactor de electrocoagulación a escala piloto para la remoción de algunos parámetros fisicoquímicos y microbiológicos presentes en las aguas residuales.,” 2017.
[20] T. Altun and E. Pehlivan, “Removal of Cr(VI) from aqueous solutions by modified walnut shells,” Food Chem., vol. 132, no. 2, pp. 693–700, 2012.
[21] P. Paltán and K. Estefanía, “Comparación de la biosorción y desorción de metales pesados mediante el uso de marlo de maíz (Zea mays) en aguas contaminadas,” 2018.
[22] G. J. Zagury, V. I. Kulnieks, and C. M. Neculita, “Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment,” Chemosphere, vol. 64, no. 6, pp. 944–954, 2006.
[23] US Environmental Protection Agency, “United States Environmental Protection Agency (USEPA), 2001. Flame atomic absorption spectrophotometry. Method 7000b,” no. February. Washington D.C, 2007.
[24] C. Sánchez, I. Egüés, A. García, R. Llano-Ponte, and J. Labidi, “Lactic acid production by alkaline hydrothermal treatment of corn cobs,” Chem. Eng. J., vol. 181–182, pp. 655–660, 2012.
[25] C. Pan, S. Zhang, Y. Fan, and H. Hou, “Bioconversion of corncob to hydrogen using anaerobic mixed microflora,” Int. J. Hydrogen Energy, vol. 35, no. 7, pp. 2663–2669, 2010.
[26] L. Zhang, S. Li, K. Li, and X. Zhu, “Two-step pyrolysis of corncob for value-added chemicals and high quality bio-oil: Effects of pyrolysis temperature and residence time,” Energy Convers. Manag., vol. 166, no. February, pp. 260–
267, 2018.
[27] D. Catherine and C. Jiménez, “Evaluación del proceso de pirólisis aplicado al material Lignocelulosico residual proveniente del pino patula en Atmosfera de dioxido de carbono,” 2018.
[28] F. Oré Jiménez, C. Lavado Meza, and S. Bendezú Montes, Biosorción de Pb (II) de aguas residuales de mina usando el marlo de maíz (Zea mays), vol. 81, no. 2. Sociedad Química del Perú, 2015.
[29] N. Vilas Boas et al., “Evaluation of kinetic and thermodynamic parameters in adsorption of lead (Pb2+) and chromium (Cr3+) by chemically modified macadamia (Macadamia integrifolia),” Desalin. Water Treat., vol. 57, no. 38, pp. 17738–17747, 2016.
[30] C. Tejada Tovar, E. Ruiz Paternina, J. Gallo Mercado, and J. Moscote Bohorquez, “Evaluación de la biosorción con bagazo de palma africana para la eliminación de Pb (II) en solución,” Prospectiva, vol. 13, no. 1, p. 59, Jun. 2015.
[31] N. C. León, “Caracterización de los productos obtenidos del proceso de pirolisis d e residuos lignocelulósicos de agave y su uso como fuente de energia,” 2017.
[32] “I nfluence of HNO 3 oxidation on the structure and adsorptive properties of corncob-based activated carbon,” vol. 41, pp. 713–722, 2003.
[33] P. Marija et al., “Removal of Pb2+ ions by raw corn silk (Zea mays L.) as a novel biosorbent,” J. Taiwan Inst. Chem. Eng., vol. 0, pp. 1–10, 2015.
[34] G. A. Julisa et al., “EFECTO DEL TAMAÑO DE PARTÍCULA EN LA ADSORCIÓN DE Pb (II) UTILIZANDO OLOTE DE MAÍZ,” no. Ii, 2015.
[35] C. C. Lugo, L. Y. V. Fiallo, and C. A. R. Reyes, “Fe and mn retention in natural water by adsorption-oxidation on clinoptilolite,” Revista Facultad de Ingenieria, no. 66. pp. 24–44, 2013.
[36] F. Arce et al., “Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover,” Australian Journal of Soil Research, vol. 48, no. 7. pp. 618–626, 2010.
[37] M. Sevilla and A. B. Fuertes, “The production of carbon materials by hydrothermal carbonization of cellulose,” Carbon, vol. 47, no. 9. pp. 2281–2289, 2009.
[38] K. Wiwin Rewini, I. Ishak, L. Lukman AR, and I. Hendrik, “FTIR , XRD and SEM Analysis of Microcrystalline Cellulose ( MCC ) Fibers from Corncorbs in Alkaline Treatment FTIR , XRD and SEM Analysis of Microcrystalline Cellulose ( MCC ) Fibers from Corncorbs in Alkaline Treatment,” J. Phys., pp. 0–8, 2018.
[39] G. B. Kankiliç, A. Ü. Metin, and I. Tüzün, “Phragmites australis: An alternative biosorbent for basic dye removal,” Ecol. Eng., vol. 86, pp. 85–94, 2016.
[40] M. Á. Ramírez-Niño and M. . Navarro-Ramirez, “Análisis de metales pesados en suelos irrigados con agua del río Guatiquía.(Heavy Metal Analysis on Soils Irrigated with Water from the Guatiquía River),” Ciencia En Desarrollo, vol. 6, no. 2, pp. 167–175, 2015, doi: 10.19053/01217488.3787.
[41] M. Diana and R. Katherine, “Determinacion de la capacidad de remocion de cadmio, plomo y niquel por hongos de la podredumbre blanca inmovilizados diana milena morales fonseca katherine johanna ruiz tovar,” 2008.
[42] C. L. Carolina, V. Luz Yolanda, and R. Alberto Carlos, “Remoción de Fe y Mn en aguas naturales por adsorción-oxidación sobre clinoptilolita Fe and Mn retention in natural water by adsorption-oxidation on clinoptilolite,” Fac. Ing. Univ. Antioquia, vol. 66, pp. 24–44, 2013.
[43] C. Do Quoc, S. Choi, H. Kim, and S. Kang, “Application of Biosorption for Removal of Heavy Metals from Wastewater _ IntechOpen,” Appl. Sci., vol. 9, pp. 3–15, 2017.
[44] T. Candelaria, V. Ángel, and G. Luz, “Adsorción de metales pesados en aguas residuales usando materiales de origen biológico,” TecnoLogicas, vol. 18, no. 34, pp. 109–123, 2015.
[45] I. Josefina and P. Cazón, “Remoción de metales pesados empleando algas marinas,” Universidad Nacional de la Plata, 2012.
[46] M. Fernández Villalón, O. Calzado Lamela, D. A. Cascaret Carmenaty, and R. M. Pérez Silva, “Factores de mayor influencia en la adsorción de metales pesados por biomasa seca de Kluyveromyces Marxianus CCEBI 2011,” Tecnol. Química, vol. 38, no. 2, pp. 335–345, 2018.
[47] M. Petrović et al., “Mechanism of adsorption of Cu2+ and Zn2+ on the corn silk (Zea mays L.),” Ecol. Eng., vol. 99, pp. 83–90, 2017.
[48] C. Tejada, A. Villabona Ortiz, and E. Ruiz Paternina, “Study for removal of Pb (II), Ni (II) and Cr (VI) in solutions using support chemically modified,” Prospect, vol. 12, no. 2, pp. 7–17, 2014.
[49] O. Sepúlveda Delgado, Z. E. Suárez Aguilar, M. Patarroyo Mesa, S. Bautista Díaz, and L. C. Canaria Camargo, “Estudio del comportamiento e impacto de la climatología sobre el cultivo de la papa y del pasto en la región central de Boyacá empleando los sistemas dinámicos in the Central Region of Boyacá Using Dynamic Systems,”
Ciencia En Desarrollo, vol. 6, no. 2, pp. 215–224, 2015.
[50] Y. Maryam Roza and V. Riku, “Tailored mesoporous biochar sorbents from pinecone biomass for the,” J. Mol. Liq., vol. 291, pp. 13–20, 2019.
[51] A. González Suárez, G. Hernández Alfonso, and I. Pereda Reyes, “Pretratamiento Alcalino De Bagazo De Caña Para Mejorar La Producción De Biometano,” Cent. Azúcar, vol. 46, no. 4, pp. 79–88, 2019.
[52] J. O. Nwadiogbu, V. I. E. Ajiwe, and P. A. C. Okoye, “Removal of crude oil from aqueous medium by sorption on hydrophobic corncobs : Equilibrium and kinetic studies Removal of crude oil from aqueous medium by sorption on hydrophobic corncobs : Equilibrium and kinetic studies,” vol. 3655, 2018.
[53] Á. P. Sánchez Cepeda, R. Vera Graziano, E. de J. Muñoz-Prieto, E. Y. Gomez-Pachon, M. J. Bernard-Bernard, and A. M. Cerda, “Preparación y caracterización de membranas poliméricas electrohiladas de policaprolactona y quitosano para la liberación controlada de clorhidrato de tiamina,” Ciencia En Desarrollo, vol. 7, no. 2, pp. 133–151, 2016, doi: 10.19053/01217488.v7.n2.2016.4818.
[54] A. Albis, “Remoción de plomo de soluciones acuosas usando cáscara de yuca modificada con ácido cítrico,” Av. Investig. en Ing., vol. 13, no. 1–5, 2016.
[55] Y. Vasquez, “Implementation of the passive system for coal mine drainage treatment.,” vol. 13, no. 128, p. 234, 2011.
[56] D. C. Ramos, “Cadmium , Copper and Lead Adsorption on Natural and Modified Bentonite , Kaolin and Zeolite : A Review of Process Parameters , Isotherms and Kinetics ın y Zeolita Naturales y Modificadas : Una Revisi ´ on de los Par ´ etica,” Rev. Ing., vol. 23, pp. 252–273, 2018.
[57] A. M. Lara, Caracterización y aplicación de biomasa residual a la eliminación de metales pesados. 2008.
[58] B. H. Dorian, “Bioadsorción De Metales Pesados Mediante El Uso De Biomasa Bacteriana Aislada De Jales Mineros,” 2008.