Optimal temperature for germination and seedling development of cowpea seeds
Abstract
Temperature is one of the climatic elements that affect most the germination process and seedling development. Thus, the objective of this study was to evaluate the germination and seedling development of cowpea cultivars under increasing temperature. The seeds of the cultivars Acauã, Carijó, Guariba, Gurguéia, Itaim, Juruá, Pajeú, Potengi, Pujante, Rouxinol, Tapahium, and Tumucumaque were kept in germination chamber at temperatures of 20, 25, 30, 35 and 40°C, with photoperiod of 12 h. Cowpea seeds have optimal germination performance and seedling development at temperatures in the range of 30.49 - 35.48°C. The cultivars presented germination percentage above 91% under 40°C, however, the seedling were abnormal. The temperature of 20°C provided germination above 96%, but with a longer period to germinate. The temperature range between 30 - 35°C favored the germination speed index, average time, and seed germination speed, with optimum temperatures varying between the cultivars. The highest rate of normal seedlings was observed at temperatures between 25 and 35°C.
Keywords
Germination, Seedling development, Thermal stress, Vigna unguiculata
References
Bewley, J.D., J.D. Bradford, K. Hilhorst, and H. Nonogaki. 2013. Seeds: physiology of development, germination and dormancy. Springer, New York. Doi: https://doi.org/10.1007/978-1-4614-4693-4
Brazil, Ministério da Agricultura, Pecuária e Abastecimento. 2009. Regras para análise de sementes.: MAPA/ACS, Brasília, DF.
CONAB, Companhia Nacional de Abastecimento. 2019. Acompanhamento da safra brasileira de grãos. v. 6 – Safra 2018/2019, n. 9 - Nono levantamento, Brasília.
Djanaguiraman, M., R. Perumal, I.A. Ciampitti, S.K. Gupta, and P.V.V. Prasad. 2018. Quantifying pearl millet response to high temperature stress: Thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. Pl. Cel. Environ. 41(1), 993-1007. Doi: https://doi.org/10.1111/pce.12931
Felix, C.F., F.S. Araújo, M.D. Silva, C.S. Ferrari, and M.V. Pacheco. 2018. Estresse hídrico e térmico na germinação de sementes de Leucaena leucocephala (Lam.) de Wit. Rev. Bras. Cienc. Agrar. 13(2), 1-7. Doi: https://doi.org/10.5039/agraria.v13i2a5515
Ferreira, D.F. 2011. Sisvar: a computer statistical analysis system. Ciênc. Agrotec. 35(6), 1039-1042. Doi: https://doi.org/10.1590/S1413-70542011000600001
Gao-Takai, M., A. Katayama-Ikegami, K. Matsuda, H. Shindo, S. Uemae, and M. Oyaizu. 2019. A low temperature promotes anthocyanin biosynthesis but does not accelerate endogenous abscisic acid accumulation in red-skinned grapes. Plant Sci. 283(1), 165-176. Doi: https://doi.org/10.1016/j.plantsci.2019.01.015
Gordin, C.R.B., R.F.Marques, T.E. Masetto and S.P.Q. Scalon. 2012. Germinação, biometria de sementes e morfologia de plântulas de Guizotia abyssinica Cass. Rev. Bras. Semen. 34(4), 619-627. Doi: https://doi.org/10.1590/S0101-31222012000400013
IPCC, Intergovernmental Panel on Climate Change. 2013: Mudanças climáticas 2013: The Physical Science Basis. Contribuição do Grupo de Trabalho I para o Quinto Relatório de Avaliação do Painel Intergovernamental sobre Mudanças Climáticas [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, UK; New York, NY.
Martinez, C.A., E.A.D. Oliveira, T.R.P. Mello, and A.L.A. Marin. 2015. Respostas das plantas ao incremento atmosférico de dióxido de carbono e da temperatura. Rev. Bras. Geo. Fis. 8(6), 635-650. Doi: https://doi.org/10.26848/rbgf.v8.0.p635-650
Melo Junior, J.L.A., L.D.F. de A. Melo, J.C. Araujo Neto, and V.M. Ferreira. 2018. Germination and morphology of seeds and seedlings of Colubrina glandulosa Perkins after overcoming dormancy. Aust. J. Crop Sci. 12(1), 639-647. Doi: https://doi.org/10.21475/ajcs.18.12.04.pne980
Mesgaran, M.B., A. Onofri, H.R. Mashhadi, and R.D. Cousens. 2017. Water availability shifts the optimal temperatures for seed germination A modelling approach. Ecol. Model. 351(1), 87-95. Doi: https://doi.org/10.1016/j.ecolmodel.2017.02.020
Miransari, M. and D.L. Smith. 2014. Plant hormones and seed germination. Environ. Exp. Bot. 99(1), 110-121. Doi: https://doi.org/10.1016/j.envexpbot.2013.11.005
Motsa, M.M., M.M. Slabbert, W. Averbeke, and L. Morey. 2015. Effect of light and temperature on seed germination of selected African leafy vegetables. Sout. Afr. J. Bot. 99(1), 29-35. Doi: https://doi.org/10.1016/j.sajb.2015.03.185
Orzari, I., P.A. Monquero, F.C. Reis, R.S. Sabbag, and A.C.S. Hirata. 2013. Germinação de espécies da família Convolvulaceae sob diferentes condições de luz, temperatura e profundidade de semeadura. Pl. Dan. 31(1), 53-61. Doi: https://doi.org/10.1590/S0100-83582013000100006
Pádua, G.P de., R.K. Zito, N.E. Arantes, and J.B. Rança Neto. 2010. Influência do tamanho da semente na qualidade fisiológica e na produtividade da cultura da soja. Rev. Bras. Semen. 32(3), 09-16. Doi: https://doi.org/10.1590/S0101-31222010000300001
Parmoon, G., S.A. Moosavi, H. Akbari, and A. Ebadi. 2015. Quantifying cardinal temperatures and thermal time required for germination of Silybum marianum seed. Crop J. 3(1), 145-151. Doi: https://doi.org/10.1016/j.cj.2014.11.003
Ranal, M.A., D.G. Santana, W.R. Ferreira, and C. Mendes-Rodrigues. 2009. Calculating germination measurements and organizing spreadsheets. Braz. J. Bot. 32, 849-855. Doi: https://doi.org/10.1590/S0100-84042009000400022
Saboya, R.C.C., P.R.S. Borges, L.M.F. Saboya, F.P. dos R. Monteiro, A.E.A. Souza, and A.F. Santo. 2013. Response of cowpea to inoculation with nitrogen-fixing strains in Gurupi-Tocantins State. J. Biot. Biod. 4(1), 40-48. Doi: https://doi.org/10.20873/jbb.uft.cemaf.v4n1.saboya
Santana, D.G. and M.A. Ranal. 2000. Análise estatística da germinação. Rev. Bras. Fisi. Veg. 12, 175-204.
Santana, D.G. and M.A. Ranal. 2004. Análise da germinação: um enfoque estatístico. Editora Universidade de Brasília, Brasília, Brazil.
Santos, G.A. and P.C. Zonetti. 2009. Influência da temperatura na germinação e desenvolvimento do girassol (Helianthus annuus L.). Rev. Inic. Cien. Ces. 11(1), 23-27.
Silva, R.C.B., M. do N. Araujo, F.L.S. Ornellas, and B.F. Dantas. 2018. Thermal stress and physiological changes in watermelon seeds. Rev. Pes. Agr. Trop. 48(1), 66-74. Doi: https://doi.org/10.1590/1983-40632018v4850404
Silva, R.B., V.P. Matos, S.G.G. Farias, L.H.M. Sena, and D.Y.B.O. Silva. 2017. Germinação e vigor de plântulas de Parkia platycephala Benth. em diferentes subustratos e temperaturas. Rev. Ciênc. Agron. 48(1), 142-150. Doi: https://doi.org/10.5935/1806-6690.20170016
Taiz, L., E.Z.I.M. Moller, and A. Murphy. 2017. Fisiologia e desenvolvimento vegetal. 6th ed. Artmed, Porto Alegre.
Tribouillois, H., C. Durr, D. Demilly, M.H. Wagner, and E. Justes. 2016. Determination of germination response to temperature and water potential for a wide range of cover crop species and related functional groups. PLoS One 11(1). Doi: https://doi.org/10.1371/journal.pone.0161185
Vale, J.C., C. Bertini, and A. Borém. 2017. Feijão-caupi: do plantio à colheita. Editora UFV, Viçosa, Brazil.
Zabot, L., L.M.C. Dutra, D.C. Garcia, N.L. Menezes, and M.P. Ludwig. 2008. Temperatura e qualidade fisiológica no crescimento de plântulas de Feijoeiro. Rev. Bras. Agr. 14(4), 60-64.