Skip to main navigation menu Skip to main content Skip to site footer

Characterization of cape gooseberry (Physalis peruviana L.) fruits from plants irrigated with different regimens and calcium doses

Cape gooseberry fruit at harvest. Photo: G. Fischer

Abstract

Cape gooseberry fruits have positioned in the world market due to their excellent nutritional characteristics, because they are an ideal food that contributes to raising the defenses of the human body and helps it to face diseases such as COVID-19, they are also a natural source of antioxidants and anticancer agents. In order to avoid the physiopathy of cracking in cape gooseberry fruits, these were characterized at harvest time, coming from greenhouse plants irrigated with different applications of water levels and irrigation frequencies, as well as different calcium doses, in a design of randomized complete blocks with 12 treatments. The blocks were the irrigation frequencies (4, 9 and 14 days), while the treatments were the combination of four irrigation coefficients (0.7, 0.9, 1.1 and 1.3 of the evaporation of the tank class A) and three doses of calcium (0, 50 and 100 kg ha-1). The plants were sown in 20 L pots with peat moss substrate.  Fruits were harvested at the color stage 5 and 6 of the calyx, from 19 weeks after transplanting. The different water levels and irrigation frequencies did not significantly affect the firmness of the cape gooseberry fruits, but there was a strong tendency that cracked gooseberry fruits are less firm than healthy fruits. As the irrigation coefficient increased, the total soluble solids (TSS) increased while the total titratable acids (TTA) decreased. Irrigation frequency of 14 days generated fruits with higher TSS and pH values. The calcium doses did not affect the calcium concentration in the fruits or the TSS, TTA and pH values. Therefore, it can be concluded that incremented irrigation coefficients (up to 1.3) increase the quality of cape gooseberry fruits.

Keywords

Irrigation, Firmness, Soluble solids, Titratable acidity, Maturity index, pH

PDF

References

  1. Agbemafle, R., J. Owusu-Sekyere, A. Bart-Plange, and J. Otchere. 2014. Effect of deficit irrigation and storage on physicochemical quality of tomato (Lycopersicon esculentum Mill., var. Pechtomech). Food Sci. Qual. Manage. 34, 113-121
  2. Agronet. 2020. Sistema de estadísticas agropecuarias. Producción nacional por producto: uchuva. In: http://www.agronet.gov.co; consulted: May, 2020.
  3. Almutairi, K.F., D.R. Bryla, and B.C. Strik. 2017. Potential of deficit irrigation, irrigation cutoffs, and crop thinning to maintain yield and fruit quality with less water in northern highbush blueberry. HortScience 52(4), 625-633. Doi: 10.21273/HORTSCI11533-16
  4. Álvarez-Herrera, J., H. Balaguera-López, and G. Fischer. 2012. Effect of irrigation and nutrition with calcium on fruit cracking of the cape gooseberry (Physalis peruviana L.) in the three strata of the plant. Acta Hortic. 928, 163-170. Doi: 10.17660/ActaHortic.2012.928.19
  5. Álvarez-Herrera, J., G. Fischer, L.P. Restrepo, and M. Quicazán. 2014. Contenidos de carotenoides totales y ácido ascórbico en frutos sanos y rajados de uchuva (Physalis peruviana L.). Acta Hortic. 1016, 7-81. Doi: 10.17660/ActaHortic.2014.1016.8
  6. Álvarez-Herrera, J., G. Fischer, and J.E. Vélez. 2021. Análisis de la producción de uchuva (Physalis peruviana L.) durante el ciclo de cosechas en invernadero con diferentes láminas de riego. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 45(174), 109-121. Doi: 10.18257/raccefyn.1239
  7. Álvarez-Herrera, J., G. Fischer, and J. Vélez-Sánchez. 2015. Producción de frutos de uchuva (Physalis peruviana L.) bajo diferentes láminas de riego, frecuencias de riego y dosis de calcio. Rev. Colomb. Cienc. Hortic. 9(2), 222-233. Doi: 10.17584/rcch.2015v9i2.4177
  8. Aman, F. and S. Masood. 2020. How nutrition can help to fight against COVID-19 pandemic. Pak. J. Med. Sci. 36(COVID19-S4), 121-123. Doi: 10.12669/pjms.36.COVID19-S4.2776
  9. Amézquita, N., H.E. Balaguera-López, and J.G. Álvarez-Herrera. 2008. Efecto de la aplicación precosecha de giberelinas y calcio en la producción, calidad y rajado del fruto de uchuva (Physalis peruviana L.). Rev. Colomb. Cienc. Hortic. 2(2), 133-144. Doi: 10.17584/rcch.2008v2i2.1182
  10. Arah, I.K., H. Amaglo, E.K. Kumah, and H. Ofori. 2015. Preharvest and postharvest factors affecting the quality and shelf life of harvested tomatoes: A mini review. Int. J. Agron. 2015, 478041. Doi: 10.1155/2015/478041
  11. Balaguera-López, H.E., M. Espinal-Ruiz, J.M. Rodríguez-Nieto, A. Herrera-Arévalo, and L. Zacarías. 2021. 1-Methylcyclopropene inhibits ethylene perception and biosynthesis: A theoretical and experimental study on cape gooseberry (Physalis peruviana L.) fruits. Postharvest Biol. Technol. 174, 111467. Doi. 10.1016/j.postharvbio.2021.111467
  12. Batista-Silva, W., V.L. Nascimento, D.B. Medeiros, A. Nunes-Nesi, D.M. Ribeiro, A. Zsögön, and W.L. Araujo. 2018. Modifications in organic acid profiles during fruit development and ripening: correlation or causation? Front. Plant Sci. 9, 1689. Doi: 10.3389/fpls.2018.01689
  13. Bayona-Penagos, L.V., J.E. Vélez-Sánchez, and P. Rodríguez-Hernández. 2017. Effect of deficit irrigation on the postharvest of pear variety Triunfo de Viena (Pyrus communis L.) in Sesquile (Cundinamarca, Colombia). Agron. Colomb. 35(2), 238-246. Doi: 10.15446/agron.colomb.v35n2.63974
  14. Bazalar Pereda, M.S., M.A. Nazareno, and C.I. Viturro. 2019. Nutritional and antioxidant properties of Physalis peruviana L. fruits from the Argentinean Northern Andean region. Plant Foods Human Nutr. 74, 68-75. Doi: 10.1007/s11130-018-0702-1
  15. Bazalar Pereda, M.S., M.A. Nazareno, and C.I. Viturro. 2020. Optimized formulation of a Physalis peruviana L. fruit nectar: physicochemical characterization, sensorial traits and antioxidant properties. J. Food Sci. Technol. 57(9), 3267-3277. Doi: 10.1007/s13197-020-04358-w
  16. Beckles, D.M. 2012. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Tecnol. 63(1), 129-140. Doi: 10.1016/j.postharvbio.2011.05.016
  17. Bhatla, S.C. 2018. Abiotic stress. pp. 969-1028. In: Bhatla, S.C. and M.A. Lal (eds.). Plant physiology, development and metabolism. Springer Nature, Singapore. Doi: 10.1007/978-981-13-2023-1_31
  18. Cataldo, E., L. Salvi, and G.B. Mattii. 2021. Effects of irrigation on ecophysiology, sugar content and thiol precursors (3-S-cysteinylhexan-1-ol and 3-S-glutathionylhexan-1-ol) on Vitis vinifera cv. Sauvignon Blanc. Plant Physiol. Biochem. 164, 247-259. Doi: 10.1016/j.plaphy.2021.04.029
  19. Ciro Velasquez, H.J., O.H. Buitrago Giraldo, and S.A. Pérez Arango. 2007. Estudio preliminar de la resistencia mecánica a la fractura y fuerza de firmeza para fruta de uchuva (Physalis peruviana L.). Rev. Fac. Nal. Agr. Medellín 60(1), 3785-3796.
  20. Colombia Icontec, Instituto Colombiano de Normas Técnicas. 1999. Frutas frescas. Uchuva. Especificaciones. Norma Técnica Colombiana NTC 4580. Bogota.
  21. Duan, Y., L. Yang, H. Zhou, J. Zhou, H. Sun, and H. Gong. 2021. Structure and expression analysis of sucrose phosphate synthase, sucrose synthase and invertase gene families in Solanum lycopersicum. Int. J. Mol. Sci. 22(9), 4698. Doi: 10.3390/ijms22094698
  22. El-Beltagi, H.S., H.I. Mohamed, G. Safwat, M. Gamal, and B.M.H. Megahed. 2019. Chemical composition and biological activity of Physalis peruviana L. Gesunde Pflanzen 71, 113-122. Doi: 10.1007/s10343-019-00456-8
  23. Faghih, S., Z. Zamani, R. Fatahi, and M. Omidi. 2021. Infuence of kaolin application on most important fruit and leaf characteristics of two apple cultivars under sustained deficit irrigation. Biol. Res. 54, 1. Doi: 10.1186/s40659-020-00325-z
  24. Fallahi, E. and S. Mahdavi. 2020. Effects of calcium with and without surfactants on fruit quality, mineral nutrient, respiration and ethylene evolution of ‘Red Spur Delicious’ apple. World J. Agric. Soil Sci. 4(5), 598. Doi: 10.33552/WJASS.2020.04.000598
  25. Fischer, G. 1995. Effect of root zone temperature and tropical altitude on the growth, development and fruit quality of cape gooseberry (Physalis peruviana L.). PhD thesis. Humboldt-University, Berlin.
  26. Fischer, G. 2005. El problema del rajado del fruto de la uchuva y su posible control. pp. 55-82. In: Fischer, G., D. Miranda, W. Piedrahita, and J. Romero. (eds.). Avances en cultivo, poscosecha y exportación de la uchuva Physalis peruviana L. en Colombia. Unibiblos, Universidad Nacional de Colombia, Bogota.
  27. Fischer, G., H.E. Balaguera-López, and S. Magnitskiy. 2021a. Review on the ecophysiology of important Andean fruits: Solanaceae. Rev. UDCA Act. Div. Cient. 24(1), e1701. Doi: 10.31910/rudca.v24.n1.2021.1701
  28. Fischer, G., H.E. Balaguera-López, and J. Álvarez-Herrera. 2021b. Causes of fruit cracking in the era of climate change. A review. Agron. Colomb. 39(2), 196-207.
  29. Doi: 10.15446/agron.colomb.v39n2.97071
  30. Fischer, G., D. Miranda, H.E. Balaguera-López, and S. Gómez-Caro. 2021c. La uchuva (Physalis peruviana L.), manejo integrado del cultivo y poscosecha. In: Cultivo, poscosecha, procesado y comercio de berries. SPE3, Valencia, Spain.
  31. Fischer, G. and O. Martínez. 1999. Calidad y madurez de la uchuva (Physalis peruviana L.) en relación con la coloración del fruto. Agron. Colomb. 16(1-3), 35-39.
  32. Fischer, G. and L.M. Melgarejo. 2020. The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Rev. Colomb. Cienc. Hortic. 14(1), 76-89. Doi: 10.17584/rcch.2020v14i1.10893
  33. García-Tejero, I., R. Romero-Vicente, J.A. Jiménez-Bocanegra, G. Martínez-García, V.H. Durán-Zuazo, and J.L. Muriel-Fernández. 2010. Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity. Agr. Water Manage. 97(5), 689-699. Doi. 10.1016/j.agwat.2009.12.012
  34. Garzón-Acosta, C.P., D.M. Villarreal-Garzón, G. Fischer, A.O. Herrera, and D.W. Sanjuanelo. 2014. La deficiencia de fósforo, calcio y magnesio afecta la calidad poscosecha del fruto de uchuva (Physalis peruviana L.). Acta Hortic. 1016, 83-88. Doi: 10.17660/ActaHortic.2014.1016.9
  35. Gordillo, O.P., G. Fischer, and R. Guerrero. 2004. Efecto del riego y de la fertilización sobre la incidencia del rajado en frutos de uchuva (Physalis peruviana L.) en la zona de Silvania (Cundinamarca). Agron. Colomb. 22(1), 53-62.
  36. Guizani, M., S. Dabbou, S. Maatallah, G. Montevecchi, H. Hajlaoui, M. Rezig, A.N. Helal, and S. Kilani-Jaziri. 2019. Physiological responses and fruit quality of four peach cultivars under sustained and cyclic deficit irrigation in center-west of Tunisia. Agric. Water Manage. 217, 81-97. Doi: 10.1016/j.agwat.2019.02.021
  37. Herrera, A. 2000. Manejo poscosecha. pp. 109-127. In: Flórez, V., G. Fischer, and A. Sora (eds.). Producción, poscosecha y exportación de la uchuva (Physalis peruviana L.). Unibiblos, Universidad Nacional de Colombia, Bogota.
  38. Hocking, B., S.D. Tyerman, R.A.Burton, and M. Gilliham. 2016. Fruit calcium: transport and physiology. Front. Plant Sci. 7, 569. Doi: 10.3389/fpls.2016.00569
  39. Jiang, F., A. López, S. Jeon, S.T. Freitas, Q. Yu, Z. Wu, J.M. Labavitch, S. Tian, A.L.T. Powell, and E. Mitcham. 2019. Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences tomato cracking. Horticultural Research 6, 17. Doi: 10.1038/s41438-018-0105-3
  40. Kathpalia, R. and S.C. Bhatla. 2018. Plant mineral nutrition. pp. 37-81. In: Bhatla, S.C. and M.A. Lal (eds.). Plant physiology, development and metabolism. Springer Nature, Singapore. Doi: 10.1007/978-981-13-2023-1_2
  41. Khan, A.S. and S. Ali. 2018. Preharvest sprays affecting shelf life and storage potential of fruits. pp. 209-255. In: Siddiqui, M.W. (ed.). Preharvest modulation of postharvest fruit and vegetable quality. Academic Press, London. Doi: 10.1016/B978-0-12-809807-3.00009-3
  42. Kochhar, S.L. and S.K. Gujral. 2020. Plant physiology: Theory and applications. 2nd ed. Cambridge University Press, Cambridge, UK. Doi: 10.1017/9781108486392
  43. Lal, M.A. 2018. Metabolism of storage carbohydrates. pp. 339-377. In: Bhatla, S.C. and M.A. Lal. (eds.). Plant physiology, development and metabolism. Springer Nature, Singapore. Doi: 10.1007/978-981-13-2023-1_9
  44. Lambers, H. and R.S. Oliveira. Mineral nutrition. pp. 301-384. Plant physiological ecology. Springer, Cham, Germany. Doi: 10.1007/978-3-030-29639-1_9
  45. Lara, I. 2013. Preharvest sprays and their effects on the postharvest quality of fruit. Stewart Postharvest Rev. 3, 1-12. Doi: 10.2212/spr.2013.3.5
  46. Lima, J.M., P.D. Welter, M.F.S. Santos, W. Kavcic, B.M. Costa, A.F. Fagherazzi, F.R. Nerbass, A.A. Kretzschmar, L. Rufato, and G. Baruzzi. 2021. Planting density interferes with strawberry production efficiency in southern Brazil. Agronomy 11, 408. Doi: 10.3390/agronomy11030408
  47. Lobos, T.E., J.B. Retamales, and E.J. Hanson. 2021. Early preharvest calcium sprays improve postharvest fruit quality in ‘Liberty’ highbush blueberries. Sci. Hortic. 227, 109790. Doi: 10.1016/j.scienta.2020.109790
  48. Marín, A., J.S. Rubio, V. Martínez, and M.I. Gil. 2009. Antioxidant compounds in green and red peppers as affected by irrigation frequency, salinity and nutrient solution composition. J. Sci. Food Agric. 89, 1352-1359. Doi: 10.1002/jsfa.3594
  49. Marschner, P. (ed.). 2012. Marschner’s mineral nutrition of higher plants. 3rd ed. Academic Press, London. Doi: 10.1016/C2009-0-63043-9
  50. Maruenda, H., R. Cabrera, C. Cañari-Chumpitaz, J.M. López, and D. Toubiana. 2018. NMR-based metabolic study of fruits of Physalis peruviana L. grown in eight different Peruvian ecosystems. Food Chem. 262, 94-101. Doi: 10.1016/j.foodchem.2018.04.032
  51. Medyouni, I., R. Zouaoui, E. Rubio, S. Serino, H.B. Ahmed, and N. Bertin. 2021. Effects of water deficit on leaves and fruit quality during the development period in tomato plant. Food Sci. Nutr. 9(4), 1949-1960. Doi: 10.1002/fsn3.2160
  52. Miranda, D. and G. Fischer. 2021. Avances tecnológicos en el cultivo de la uchuva (Physalis peruviana L.) en Colombia. pp. 14-36. In: Fischer, G., D. Miranda, S. Magnitskiy, H.E. Balaguera-López, and Z. Molano (eds.). Avances en el cultivo de las berries en el trópico. Sociedad Colombiana de Ciencias Hortícolas, Bogota. Doi: 10.17584/IBerries
  53. Mokhtar, S.M., H.M. Swailam, and H.E. Embaby. 2018. Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder. Food Chem. 248, 1-7. Doi: 10.1016/j.foodchem.2017.11.117
  54. Mubarok, S., S. Dahlania, and N. Suwali. 2019. Dataset on the change of postharvest quality of Physalis peruviana L. as an effect of ethylene inhibitor. Data Br. 24, 103849. Doi: 10.1016/j.dib.2019.103849
  55. Niu, J., Y. Shi, K. Huang, Y. Zhong, J. Chen, Z. Sun, M. Luan and J. Chen. 2020. Integrative transcriptome and proteome analyses provide new insights into different stages of Akebia trifoliata fruit cracking during ripening. Biotechnol. Biofuels 13, 149. Doi: 10.1186/s13068-020-01789-7
  56. Novoa, R.H., M. Bojacá, J.A. Galvis, and G. Fischer. 2006. La madurez del fruto y el secado del cáliz influyen en el comportamiento poscosecha de la uchuva (Physalis peruviana L.) almacenada a 12ºC. Agron. Colomb. 24(1), 77-86.
  57. Özbahçe, A., A.F. Tari, S. Yücel, O. Okur, and H. Padem. 2014. Influence of limited water stress on yield and fruit quality of melon under soil-borne pathogens. Toprak Su Derg. 3(1), 70-76.
  58. Patané, C., S. Tringali, and O. Sortino. 2011. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Hortic. 129, 590-596. Doi: 10.1016/j.scienta.2011.04.030
  59. Pessoa, C.C., F. Lidon, A.R. Coelho, J.C. Caleiro, A. Coelho, I.C. Luis, J.C. Kullberg, P. Legoinha, M. Brito, J.C. Ramalho, M.A.M. Guerra, R.G. Leitão, M. Simões, P. Scotti, J.M. Semedo, M.M. Silva, I.P. Pais, N. Leal, N. Alvarenga, E.M. Gonclaves, A.P. Rodrigues, M.J. Silva, M. Abreu, M.F. Pessoa, and F.H. Reboredo. 2021. Calcium biofortification of Rocha pears, tissues accumulation and physicochemical implications in fresh and heat-treated fruits. Sci. Hortic. 277, 109834. Doi: 10.1016/j.scienta.2020.109834
  60. Poovarodom, S. and N. Boonplang. 2010. Soil calcium application and pre-harvest calcium and boron sprays on mangosteen fruit quality attributes. Acta Hort. 868, 359-366. Doi: 10.17660/ActaHortic.2010.868.48
  61. Porro, D., M. Ramponi, T. Tomasi, L. Rolle, and S. Poni. 2010. Nutritional implications of water stress in grapevine and modifications of mechanical properties of berries. Acta Hortic. 868, 73-80. Doi: 10.17660/ActaHortic.2010.868.5
  62. Rahman, M.U., M. Sajid, A. Rab, S. Ali, M.O. Shahid, A. Alam, M. Israr, and I. Ahmad. 2016. Impact of calcium chloride concentrations and storage duration on quality attributes of peach (Prunus persica). Russ. Agric. Sci. 42(2), 130-136. Doi: 10.3103/S1068367416020099
  63. Ripoll, J., L. Urban, M. Staudt, F. López-Lauri, L. Bidel, and N. Bertin. 2014. Water shortage and quality of fleshy fruits-making the most of the unavoidable. J. Exp. Bot. 65(15), 4097-4117. Doi: 10.1093/jxb/eru197
  64. Rufat, J., A, Arbonés, P. Villar, X. Domingo, M. Pascual, and J.M. Villar. 2010. Effects of irrigation and nitrogen fertilization on growth, yield and fruit quality parameters of peaches for processing. Acta Hortic. 868, 87-94. Doi: 10.17660/ActaHortic.2010.868.7
  65. Soliman, M.A.M., H.A. Ennab, and G.B. Mikhael. 2018. Effect of periodic deficit irrigation at different fruit growth stages on yield and fruit quality of ‘Anna’ apple trees. J. Plant Prod. 9(1), 13-19. Doi: 10.21608/jpp.2018.35233
  66. Vallarino, J.G. and S. Osorio. 2019. Organic acids. pp. 207-223. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Kidlington, UK. Doi: 10.1016/B978-0-12-813278-4.00010-5
  67. Wang, Y., L. Guo, X. Zhao, Y. Zhao, Z. Hao, H. Luo and Z. Yuan. 2021. Advances in mechanisms and omics pertaining to fruit cracking in horticultural plants. Agronomy 11(6), 1045. Doi: 10.3390/agronomy11061045
  68. Winkler, A. and M. Knoche. 2021. Calcium uptake through skins of sweet cherry fruit: Effects of different calcium salts and surfactants. Sci. Hortic. 276, 109761. Doi: 10.1016/j.scienta.2020.109761
  69. Wojcik, P. 2012. Quality and ‘Conference’ pear storability as influenced by preharvest sprays of calcium chloride. J. Plant Nutr. 35(13), 1970-1983. Doi: 10.1080/01904167.2012.716890
  70. Yahia, E.M., A. Carrillo-López, and L.A Bello-Pérez. 2019. Carbohydrates. pp. 175-205. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Kidlington, UK. Doi: 10.1016/b978-0-12-813278-4.00009-9
  71. Zhou, H.M., F.C. Zhang, K. Roger, L.F. Wu, D.Z. Gong, N. Zhao, D.X. Yin, Y.Z. Xiang, and Z.J. Li. 2017. Peach yield and fruit quality is maintained under mild deficit irrigation in semi-arid China. J. Integr. Agric. 16(5), 1173-1183. Doi: 10.1016/S2095-3119(16)61571-X

Downloads

Download data is not yet available.

Most read articles by the same author(s)

<< < 1 2 3 

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.