Temporal distribution of Botrytis cinerea and its relationship to the production of strawberries (Fragaria × ananassa Duch., Monterrey variety) subjected to biological treatments with microbial antagonists

Authors

DOI:

https://doi.org/10.17584/rcch.2023v17i1.15284

Keywords:

Gray mold, Biological regulation, Mycorrhizae, Antagonist bacteria, Trichoderma sp.

Abstract

In the Bogota Plateau (Bogota Savanna-Colombia), strawberry cultivation (Fragaria × ananassa Duch.) is established from 2,000 to 2,800 m a.s.l. In this environment the relative humidity is generally greater than 70% and the temperature fluctuates between 14 and 22°C; this is a favorable climate for the development of fungal diseases. Gray mold (Botrytis cinerea) is the most important disease here and fruit losses can exceed 40% of production. The purpose of this research was to analyze the effect of the use of microbial antagonists in the biological regulation of B. cinerea and its relationship to production. Fragaria × ananassa Duch, cv. Monterrey plants were inoculated and co-inoculated (combination) at the time of transplantation with microbial consortia made up of mycorrhizal fungi, antagonistic bacteria and Trichoderma harzianum. We evaluated the temporal incidence of B. cinerea and the production of healthy fruits at 90, 180 and 270 days after transplantation. We observed a temporary increase in the incidence of the disease from 6.59 to 23.08% in the control plants, and higher values than those observed with biological treatment. Treatment with mycorrhizae showed the lowest values of B. cinerea with values from 0.89, 13.78% and the best treatment in fruit production. Inoculation and co-inoculation are an alternative for reducing the incidence of disease and for increasing fruit production.

JEL Classification

Array

Downloads

Download data is not yet available.

References

Afrin, S., M. Gasparrini, T.Y. Forbes-Hernandez, P. Reboredo-Rodriguez, B. Mezzetti, B., A. Varela-López, F. Giampieri, and M. Battino. 2016. Promising health benefits of the strawberry: a focus on clinical studies. J. Agric. Food Chem. 64, 4435–4449. https://doi.org/10.1021/acs.jafc.6b00857

Aqueveque, P., C.L. Cespedes, J. Becerra, M. Aranda, and O. Sterner. 2017. Antifungal activities of secondary metabolites isolated from liquid fermentations of Stereum hirsutum (Sh134-11) against Botrytis cinerea (grey mould agent). Food Chem. Toxicol. 109(Part 2), 1048-1054. Doi: https://doi.org/10.1016/j.fct.2017.05.036

Bell, J.C., S.A. Bound, and M. Buntain. 2022. Biostimulants in agricultural and horticultural production. In: I. Warrington (ed.). Horticultural reviews. Wiley, Hoboken NJ. https://doi.org/10.1002/9781119851981.ch2

Berruti, A., E. Lumini, R. Balestrini, and V. Bianciotto. 2016. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front. Microbiol. 6(1), 1559. Doi: https://doi.org/10.3389/fmicb.2015.01559

Bona, E., S. Cantamessa, N. Massa, P. Manassero, F. Marsano, A. Copetta, G. Lingua, G. D’Agostino, E. Gamalero, and G. Berta. 2017. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27(1), 1-11. Doi: https://doi.org/10.1007/s00572-016-0727-y

Calvo, H., P. Marco, D. Blanco, R. Oria, and M.E. Venturini. 2017. Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food Microbiol. 63, 101-110. Doi: https://doi.org/10.1016/j.fm.2016.11.004

Campos-Requena, V.H., B.L. Rivasa, M.A. Péreza, C.R. Figueroa, N.E. Figueroa, and E.A. Sanfuentes. 2017. Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries. In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biol. Technol. 129, 29-36. Doi: https://doi.org/10.1016/j.postharvbio.2017.03.005

Cano, M.A. 2013. Estrategias biológicas para el manejo de enfermedades en el cultivo de fresa (Fragaria spp.). Rev. Colomb. Cienc. Hortic. 7(2), 263-276. Doi: https://doi.org/10.17584/rcch.2013v7i2.2240

Castaño, Z.J. 2002. Principios básicos de fitoepidemiología. Universidad de Caldas, Manizales, Colombia.

Chen, C., X. Zhang, X. Wei, Y. Zhu, W. Chen, and Y. Han. 2022. Postharvest biological control of Botrytis cinerea and the mechanisms underlying the induction of disease resistance in grapes by Lactobacillus plantarum CM-3. Biol. Control 172 104982. Doi: https://doi.org/10.1016/j.biocontrol.2022.104982

Colombia IDEAM, Instituto de Hidrología, Meteorología y Estudios Ambientales Colombia. 2016. Tiempo y clima. In: https://www.ideam.gov.co/web/tiempo-y-clima/clima; consulted: September, 2018.

Da Silva, A.R., G. Malafaia, and I.P.P. Menezes. 2017. Biotools-package: Tools for biometry and applied statistics in agricultural science. In: https://arsilva87.github.io/biotools/; consulted, July, 2022.

De Tender, C., B. Vandecasteele, B. Verstraeten, S. Ommeslag, T. Kyndt, and J. Debode. 2021. Biochar-enhanced resistance to Botrytis cinerea in strawberry fruits (but not leaves) is associated with changes in the rhizosphere microbiome. Front. Plant Sci. 12, 700479. Doi: https://doi.org/10.3389/fpls.2021.700479

Dominí, A. 2012. Revisión bibliográfica mejora genética de la fresa (Fragaria ananassa Duch.). Cult. Trop. 33(3), 34-41.

FRAC, Fungicide Resistance Action Committee. 2020. List of first confirmed cases of plant pathogenic organisms resistant to disease control agents. In: https://www.frac.info/; consulted: January 2023.

Korkmaz, S., D. Goksuluk, and G. Zararsiz. 2015. MVN: multivariate normality tests. R package v 4. In: https://cran.r-project.org/web/packages/MVN/vignettes/MVN.html; consulted, July, 2022.

Liang, K.Y. and S.L. Zeger. 1986. Longitudinal data analysis using generalized linear models. Biometrika 73(1), 13-22.

Lovaisa, N.C. M.F. Guerrero-Molina, P.G. Delaporte-Quintana, M.D. Alderete, A.L. Ragout, S.M. Salazar, and R.O. Pedraza. 2017. Strawberry monocropping: Impacts on fruit yield and soil Microorganisms. J. Soil Sci. Plant Nutr. 17(4), 868-883. Doi: http://doi.org/10.4067/S0718-95162017000400003

Maurya, R., S. Verma, and I. Bahadur. 2019. Advances in the application of plant growth-promoting rhizobacteria in horticulture. pp. 67-76. In: Kumar, A. and V. Meena (eds.). Plant growth promoting rhizobacteria for agricultural sustainability. Springer, Singapore. Doi: https://doi.org/10.1007/978-981-13-7553-8_3

Merchán-Gaitán, J.B., R.L. Ferrucho, and J.G. Álvarez-Herrera. 2014. Efecto de dos cepas de Trichoderma en el control de Botrytis cinerea y la calidad del fruto en fresa (Fragaria sp.). Rev. Colomb. Cienc. Hortic. 8(1), 44-56. Doi: https://doi.org/10.17584/rcch.2014v8i1.2799

Montgomery, D.C., E.A. Peck, and G.G. Vining. 2012. Introduction to linear regression analysis. Vol. 821. John Wiley & Sons, Hoboken, NJ.

Poveda, J., M. Barquero, and F. González-Andrés. 2020. Insight into the microbiological control strategies against Botrytis cinerea using systemic plant resistance activation. Agronomy 10(11), 1822. Doi: https://doi.org/10.3390/agronomy10111822

Orozco-Mosqueda, M.C., A. Kumar, A.E. Fadiji, O.O. Babalola, G. Puopolo, and G. Santoyo. 2023. Agroecological management of the grey mould fungus Botrytis cinerea by plant growth-promoting bacteria. Plants 12, 637. Doi: https://doi.org/10.3390/plants12030637

Ruiz, R. and W. Piedrahíta. 2012. Fresa. pp. 474-495. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.

Sangwan, S. and R. Prasanna. 2022. Mycorrhizae helper bacteria: Unlocking their potential as bioenhancers of plant–arbuscular mycorrhizal fungal associations. Microb. Ecol. 84, 1-10. Doi: https://doi.org/10.1007/s00248-021-01831-7

Santra, H.K. and D. Banerjee. 2020. Natural products as fungicide and their role in crop protection. pp. 131-219. In: Singh, J. and A. Yadav (eds.). Natural bioactive products in sustainable agriculture. Springer, Singapore. Doi: https://doi.org/10.1007/978-981-15-3024-1_9

Siah, A., M. Magnin-Robert, B. Randoux, C. Choma, C. Rivière, P. Halama, and P. Reignault. 2018. Natural agents inducing plant resistance against pests and diseases. pp. 121-159. In: Mérillon, J.M. and C. Riviere (eds.). Natural antimicrobial agents. Sustainable development and biodiversity. Vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-67045-4_6

Silva, L.I., I.P. Oliveira, E.C. Jesus, M.C. Pereira, M. Pasqual, R.C. Araújo, and J. Dória. 2022. Fertilizer of the future: Beneficial bacteria promote strawberry growth and yield and may reduce the need for chemical fertilizer. Agronomy 12, 2465. Doi: https://doi.org/10.3390/agronomy12102465

Simko, I. and H.-P. Piepho. 2012. The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology 102, 381-389. Doi: http://doi.org/10.1094/PHYTO-07-11-0216

Stokes, M.E., C.S. Davis, and G.G. Koch. 2012. Categorical data analysis using SAS®. 3rd ed. SAS Institute, Cary, NC.

Botrytis fruit rot in strawberry. Photo: M. Cano

Downloads

Published

2023-01-01

How to Cite

Cano, M., Darghan, A., & Cuervo, J. (2023). Temporal distribution of Botrytis cinerea and its relationship to the production of strawberries (Fragaria × ananassa Duch., Monterrey variety) subjected to biological treatments with microbial antagonists. Revista Colombiana De Ciencias Hortícolas, 17(1), e15284. https://doi.org/10.17584/rcch.2023v17i1.15284

Issue

Section

Fruits section

Metrics

Most read articles by the same author(s)