Skip to main navigation menu Skip to main content Skip to site footer

Effect of detergents on the germination and initial growth of habanero pepper (Capsicum chinense Jacq.) plants

Hydroponic cultivation of habanero pepper at the beginning of its vegetative stage. Photo: H. Estrada-Medina

Abstract

Due to the risk of contamination caused by the use of detergents, there is a growing need to evaluate their effects on plant development. The effects of three household detergents with different phosphorus concentrations (D0P: 0, D1P: 7162 and D2P: 14256 mg kg-1) on the germination and growth of Capsicum chinense Jacq. were evaluated. To study the effects on germination, the seeds were exposed to 0, 50, 500, 1,000 and 2,000 mg L-1 of the three detergents for 20 days. To evaluate the effects on growth, the experiment was performed in hydroponics and seedlings were exposed to 0, 500 and 2,000 mg L-1 of D0P and D2P detergents. The detergents caused no changes in the germination percentage, but they did modify the speed of the germination process, which was dependent on the type and concentration of the detergent. D0P delayed the onset of germination at 2,000 mg L-1 while D1P and D2P accelerated it at 1000 and 2,000 mg L-1. The three detergents stimulated the weight and vigor of the seedlings at 500 mg L-1 and inhibited them at 2,000 mg L-1, with greater inhibitory effects with D0P and D2P. The hydroponics experiment evidenced that the concentration of 500 mg L-1 of D0P and D2P reduced root and leaf growth by about 50% from day 3 of exposure and caused damage to most of the leaf tissue, being toxic to the crop at this stage. The 500 mg L-1 dose enhanced the vigor of the germinated seedlings; however, it proved to be toxic when applied to 10-day-old seedlings in hydroponic conditions.

Keywords

Horticultural, Surfactants, Phosphorus, Vegetative stage, Hydroponics

PDF

References

  • Azcón-Bieto, J. and M. Talón. 2013. Desarrollo y germinación de las semillas. In Fundamentos de fisiología vegetal. 2nd ed. Adolf Florensa, Barcelona, Spain.
  • Bojórquez-Quintal, E., A. Velarde-Buendía, A. Ku-González, M. Carillo-Pech, D. Ortega-Camacho, I. Echevarría-Machado, I. Pottosin, and M. Martínez-Estévez. 2014. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics y sodium root-shoot partition y compartmentation. Front. Plant Sci. 5(605). Doi: https://doi.org/10.3389/fpls.2014.00605
  • Borges-Gómez, L., C. Moo-Kauil, J. Ruíz-Novelo, M. Osalde-Balam, C. González-Valencia, C. Yam-Chimal, and F. Can-Puc. 2014. Suelos destinados a la producción de chile habanero en Yucatán: características físicas y químicas predominantes. Agrociencia 48(4), 347-359.
  • Cai, X. and S.A Ostroumov. 2022. Phytotoxicity of “Tide” detergent powder using lens culinaris seeds as a bioassay Xiang. Acta Scient. Microbiol. 5(2), 21-26.
  • Ehilen, O., B. Obadoni, F. Imade, D. Eseigbe, and J. Mensah. 2017. The effect of detergents on the germination y growth of Amaranthus hybridus L. y Solanum lycopersicon L. Niger. Ann. Natural Sci. 16(1), 100-108.
  • Estrada-Medina, H., P. Montañez-Escalante, L. Trejo-Salazar, R.C. Barrientos-Medin, M. López-Díaz, and O. Alvárez-Rivera. 2018. Effects of greywater discharges on shallow soil properties. Int. J. Agric. Environ. Res. 4(1).
  • Fernández-Ronquillo, M., T. Fernández-Solís, and G. Solís-Beltrán. 2016. Percepción de la población sobre los niveles de contaminación ambiental del Río Milagro y grado de conocimiento preventivo social sobre el efecto de su carga contaminante. Rev. Cienc. UNEMI 9(21), 125-134.
  • Flores-López, M. and E. Sánchez-Osorio. 2020. Entorno productivo del chile habanero en la Península de Yucatán, México. In: Metabolómica y cultivo del chile habanero (Capsicum chinense Jacq) de la Península de Yucatán (332). CIATEJ, Merida, Mexico.
  • Forni, C., F. Giordani, M. Pintore, and L. Campanella. 2008. Effects of sodium dodecyl sulphate on the aquatic macrophytes Azolla and Lemna. Plant Biosyst. 142(3), 665-668. Doi: https://doi.org/10.1080/11263500802411460
  • Heidari, H. 2012. Effect of irrigation by contaminated water with cloth detergent on plant growth y seed germination traits of maize (Zea mays). Life Sci. J. 9, 1587-1590. Doi: https://doi.org/10.15835/nsb519003
  • Heidari, H. 2013. Effect of irrigation with contaminated water by cloth detergent on seed germination traits and early growth of sunflower (Helianthus annuus L.). Notulae Scientia Biologicae 5(1). Doi: https://doi.org/10.15835/nsb.5.1.9003
  • Hoagland, D.R. and D.I. Arnon. 1950. The water-culture method for growing plants without soil. Circular California Agricultural Experiment Station. 347(2), 32 p.
  • Ikhajiagbe, B., E.O. Ohanmu, P.O. Ekhator, and P.A. Victor. 2020. The effect of laundry grey water irrigation on the growth response of selected local bean species in Nigeria B. Agric. Sci. Technol. 12(1), 64-70. Doi: https://doi.org/10.15547/ast.2020.01.012
  • Issayeva, A., E.Z. Syrlybayeva, A. Zhymadullayeva, and A. Balgabekova. 2015. The effect of detergents on the anatomical changes in the roots of beans. J. Educ. Policy Entrepren. Res. 2(2), 18-22.
  • Kroontje, W. and N. Jesse. 1973. Effect of detergent-laden water on the growth of corn. Bulletin 62. Virginia Water Resources Research Center, Blacksburg 62 p.
  • Lal, N. 2003. Effect of synthetic detergent on germination parameters, seedling growth y photosynthetic pigments in mungbean (Vigna radiata) seedlings. Pollut. Res. 22(3), 335-337.
  • Mohamed, B.D., Rizwanul, I.M., Yousaf, B., Periyasamy, S. 2022. Efects of the COVID-19 pandemic on the environment, waste management, and energy sectors: a deeper look into the long-term impacts. Environ. Sci. Poll. Res. 29, 46438–46457. Doi: https://doi.org/10.1007/s11356-022-20259-1
  • Mohammad, A.S. and A. Moheman. 2012. Effect of anionic and non-ionic surfactants in soil plant system under pot culture. pp. 261-264. In: Khemani, L.D. and S. Srivastava (eds.). Chemistry of phytopotentials: health, energy and environmental perspectives. 2nd ed. Editorial, Berlin.
  • Parsi, K. 2014. Interaction of detergent sclerosants with cell membranes. Phlebology 30(5). Doi: https://doi.org/10.1177/0268355514534648
  • Rafieepoor, M., E. Kowsari, T. Teymourian, and S. Ramakrishna. 2021. Environmental impact of increased soap consumption during COVID-19 pandemic: biodegradable soap production and sustainable packaging. Sci. Total Environ. 796, 149013. Doi: https://doi.org/10.1016/j.scitotenv.2021.149013
  • Rodda-Rodda, N., L. Salukazana, S.A.F Jackson, and M.T. Smith. 2011. Use of domestic greywater for small-scale irrigation of food crops: effects on plants y soil. Phys. Chem. Earth Parts A/B/C 36(14-15), 1051-1062. Doi: https://doi.org/10.1016/j.pce.2011.08.002
  • Shumaila, U. Sami. 2019. A quantitative assessment of germination parameters: the case of Capsicum annuum L. Int. J. Bot. Stud. 4(5), 61-68.
  • Sawadogo, B., M. Sou, and N. Hijikata. 2014. Effect of detergents from greywater on irrigated plants: case of okra (Abelmoschus esculentus) y lettuce (Lactuca sativa). J. Arid Land Stud. 24(1), 117-120.
  • Showell, M. 2016. Handbook of detergents, Part D: Formulation. CRC Press, Boca Raton, FL.
  • Sparks, D.L, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner. 1996. Methods of soil analysis, Part 3: Chemical methods. Soil Sciences Society of America, Madison, WI. Doi: https://doi.org/10.2136/sssabookser5.3
  • Toscano, S., G. La Fornara, and D. Romano. 2022. Salt spray and surfactants induced morphological, physiological, and biochemical responses in Callistemon citrinus (Curtis) plants. Horticulturae. 8(3). Doi: https://doi.org/10.3390/horticulturae8030261
  • Uzma, S., S. Khan, W. Murad, N. Taimur, and A. Azizullah. 2018. Phytotoxic effects of two commonly used laundry detergents on germination, growth and biochemical characteristics of maize (Zea mays L.) seedlings. Environ. Monit. Assess. 190(11), 651. Doi: 10.1007/s10661-018-7031-6.
  • Uc-Peraza, R.G. and V.H. Delgado-Blas. 2015. Acute toxicity and risk assessment of three comercial detergents using the polychaete Capitella sp. C from Chetumal Bay, Quintana Roo, Mexico. Int. Aquat. Res. 7(7), 251-261. Doi: https://doi.org/10.1007/s40071-015-0112-z

Downloads

Download data is not yet available.