Skip to main navigation menu Skip to main content Skip to site footer

Chemical composition and insecticidal activity of essential oils from Piper coruscans Kunt, Piper ottoniaefolium C. DC. and Piper reticulatum L. against Sitophilus zeamais Motschulsky

Piper coruscans Kunt (left), Piper ottoniaefolium C. DC. (center) and Piper reticulatum L. (right). Photos: N. Pino-Benítez

Abstract

Biocides based on essential oils (EOs) have emerged as a novel class of pest control agents due to their multifaceted bioactive properties and natural origin, which confers a reduced environmental impact. This research focused on the study of the volatile chemical composition and the repellent and fumigant activities of EOs extracted from the aerials parts of Piper coruscans Kunt (1815), Piper ottoniaefolium C. DC (1886) and Piper reticulatum L. (1753), originating from the Colombian Pacific flora, on the corn weevil Sitophilus zeamais Motschulsky (1855). The EOs were obtained by hydrodistillation and identified by GC–MS. The main components found in P. coruscans were caryophyllene oxide (31.75%), and β-selinene (10.29%), in P. ottoniaefolium were β-bisabolene (14.46%), and α-curcumene (8.36%), and in P. reticulatum were caryophyllene oxide (9.44%), and β-caryophyllene (9.01%). The repellent activity was determined by the preference area method, Area method, at 2.5 μg cm-2 and 2 h of exposure in which, the EO of P. ottoniaefolium obtained a percentage of repellency of 83.3%, higher than P. coruscans and P. reticulatum 66.7% and 36.7%, respectively against S. zeamais. Similarly, in the fumigant activity, the P. ottoniaefolium EO was more effective with an LC50 = 3.56 μL cm-3 compared to P. reticulatum = 6.12 μL cm-3 and P. coruscans = 7.43 μL cm-3. The results indicated that the EOs of these three Piperaceae have considerable insecticidal potential against S. zeamais, and they could be an alternative for the formulation of new biopesticide products.

Keywords

Piperaceae, Repellent, Fumigant, Biopesticide, Terpens

PDF

References

  1. Abbott, W. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267.
  2. Adams, R.P. 2017. Identification of essential oil components by gas chromatography/mass spectroscopy, 4.1. ed. Allured Publishing Corporation, Carol Stream.
  3. Amorim, P.R.F., Kubota, K.S.G., Carvalho-Silva, M. 2023. Trends and gaps in the knowledge of diversity, distribution and conservation of neotropical species of Piper (Piperaceae): a scoping review. Biodivers. Conserv. 32, 851–866. https://doi.org/10.1007/s10531-023-02551-9.
  4. Andrés, M.F., Rossa, G.E., Cassel, E., Vargas, R.M.F., Santana, O., Díaz, C.E., González-Coloma, A. 2017. Biocidal effects of Piper hispidinervum (Piperaceae) essential oil and synergism among its main components. Food Chem. Toxicol. 109, 1086–1092. https://doi.org/10.1016/j.fct.2017.04.017.
  5. Angane, M., Swift, S., Huang, K., Butts, C.A., Quek, S.Y. 2022. Essential Oils and Their Major Components: An Updated Review on Antimicrobial Activities, Mechanism of Action and Their Potential Application in the Food Industry. Foods 11, 464. https://doi.org/10.3390/foods11030464.
  6. Araújo, M.J.C., Câmara, C.A.G., Born, F.S., Moraes, M.M., Badji, C.A. 2012. Acaricidal activity and repellency of essential oil from Piper aduncum and its components against Tetranychus urticae. Exp. Appl. Acarol. 57, 139–155. https://doi.org/10.1007/s10493-012-9545-x.
  7. Barra, A. 2009. Factors Affecting Chemical Variability of Essential Oils: A Review of Recent Developments. Nat. Prod. Commun. 4, 1934578X0900400827. https://doi.org/10.1177/1934578X0900400827.
  8. Bhavya, M.L., Obulaxmi, S., Devi, S.S. 2021. Efficacy of Ocimum tenuiflorum essential oil as grain protectant against coleopteran beetle, infesting stored pulses. J. Food Sci. Technol. 58, 1611–1616. https://doi.org/10.1007/s13197-020-04871-y.
  9. Brito, V.D., Achimón, F., Pizzolitto, R.P., Ramírez Sánchez, A., Gómez Torres, E.A., Zygadlo, J.A., Zunino, M.P. 2021. An alternative to reduce the use of the synthetic insecticide against the maize weevil Sitophilus zeamais through the synergistic action of Pimenta racemosa and Citrus sinensis essential oils with chlorpyrifos. J. Pest Sci. 94, 409–421. https://doi.org/10.1007/s10340-020-01264-0.
  10. Carmona- Hernández, C., Lozada-García, J.A., Martínez-Hernández, M. de J., Torres-Pelayo, V. del R. 2016. Piper L. genus potential as natural biocide. Wulfenia J. 23, 65–95.
  11. Chan, W.-K., Tan, L.T.-H., Chan, K.-G., Lee, L.-H., Goh, B.-H. 2016. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules 21, 529. https://doi.org/10.3390/molecules21050529.
  12. Chandra, P., Bajpai, V., Srivastva, M., Kumar, K.B.R., Kumar, B. 2014. Metabolic profiling of Piper species by direct analysis using real time mass spectrometry combined with principal component analysis. Anal. Methods 6, 4234–4239. https://doi.org/10.1039/C4AY00246F.
  13. Chaubey, M.K. 2017. Evaluation of insecticidal properties of Cuminum cyminum and Piper nigrum essential oils against Sitophilus zeamais. J. Entomol. 14, 148–154.
  14. Chaudhari, A.K., Singh, V.K., Kedia, A., Das, S., Dubey, N.K. 2021. Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: prospects and retrospects. Environ. Sci. Pollut. Res. 28, 18918–18940. https://doi.org/10.1007/s11356-021-12841-w.
  15. Choden, S., Yangchen, U., Tenzin, J. 2021. Evaluation on Efficacy of Piper nigrum as a bio-pesticide against Sitophilus zeamais. Naresuan Univ. J. Sci. Technol. NUJST 29, 84–95. https://doi.org/10.14456/nujst.2021.19.
  16. Corrêa, A.S., Vinson, C.C., Braga, L.S., Guedes, R.N.C., De Oliveira, L.O. 2017. Ancient origin and recent range expansion of the maize weevil Sitophilus zeamais, and its genealogical relationship to the rice weevil S. oryzae. Bull. Entomol. Res. 107, 9–20. https://doi.org/10.1017/S0007485316000687.
  17. Da Silva, J.K., Da Trindade, R., Alves, N.S., Figueiredo, P.L., Maia, J.G.S., Setzer, W.N. 2017. Essential Oils from Neotropical Piper Species and Their Biological Activities. Int. J. Mol. Sci. 18, 2571. https://doi.org/10.3390/ijms18122571.
  18. Dassanayake, M.K., Chong, C.H., Khoo, T.-J., Figiel, A., Szumny, A., Choo, C.M. 2021. Synergistic Field Crop Pest Management Properties of Plant-Derived Essential Oils in Combination with Synthetic Pesticides and Bioactive Molecules: A Review. Foods. 10, 2016. https://doi.org/10.3390/foods10092016.
  19. de Lira Pimentel, C.S., Albuquerque, B.N. de L., da Rocha, S.K.L., da Silva, A.S., da Silva, A.B.V., Bellon, R., Agra-Neto, A.C., de Aguiar, J.C.R. de O.F., Paiva, P.M.G., Princival, J.L., Napoleão, T.H., Navarro, D.M. do A.F. 2022. Insecticidal activity of the essential oil of Piper corcovadensis leaves and its major compound (1-butyl-3,4-methylenedioxybenzene) against the maize weevil, Sitophilus zeamais. Pest Manag. Sci. 78, 1008–1017. https://doi.org/10.1002/ps.6712.
  20. de Souza, Michele Trombin, de Souza, Mireli Trombin, Bernardi, D., Krinski, D., de Melo, D.J., da Costa Oliveira, D., Rakes, M., Zarbin, P.H.G., de Noronha Sales Maia, B.H.L., Zawadneak, M.A.C. 2020. Chemical composition of essential oils of selected species of Piper and their insecticidal activity against Drosophila suzukii and Trichopria anastrephae. Environ. Sci. Pollut. Res. 27, 13056–13065. https://doi.org/10.1007/s11356-020-07871-9.
  21. Dekker, T., Ignell, R., Ghebru, M., Glinwood, R., Hopkins, R. 2011. Identification of mosquito repellent odours from Ocimum forskolei. Parasit. Vectors 4, 183. https://doi.org/10.1186/1756-3305-4-183.
  22. Delgado, C., Mendez-Callejas, G., Celis, C. 2021. Caryophyllene Oxide, the Active Compound Isolated from Leaves of Hymenaea courbaril L. (Fabaceae) with Antiproliferative and Apoptotic Effects on PC-3 Androgen-Independent Prostate Cancer Cell Line. Molecules 26, 6142. https://doi.org/10.3390/molecules26206142.
  23. Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., Mnif, W. 2016. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 3, 25. https://doi.org/10.3390/medicines3040025
  24. Eijsackers, H., Maboeta, M. 2023. Pesticide impacts on soil life in southern Africa: Consequences for soil quality and food security. Environ. Adv. 13, 100397. https://doi.org/10.1016/j.envadv.2023.100397.
  25. Figueiredo, A.C., Barroso, J.G., Pedro, L.G., Scheffer, J.J.C. 2008. Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr. J. 23, 213–226. https://doi.org/10.1002/ffj.1875.
  26. Fraga, B.M., Díaz, C.E., Bailén, M., González-Coloma, A. 2021. Sesquiterpene Lactones from Artemisia absinthium. Biotransformation and Rearrangement of the Insect Antifeedant 3α-hydroxypelenolide. Plants 10, 891. https://doi.org/10.3390/plants10050891.
  27. Gilardoni, G., Matute, Y., Ramírez, J. 2020. Chemical and Enantioselective Analysis of the Leaf Essential Oil from Piper coruscans Kunth (Piperaceae), a Costal and Amazonian Native Species of Ecuador. Plants 9, 791. https://doi.org/10.3390/plants9060791.
  28. Giraldo-Rivera, A.-I., Guerrero-Alvarez, G.-E., Giraldo-Rivera, A.-I., Guerrero-Alvarez, G.-E. 2019. Botanical biopesticides: research and development trends, a focus on the Annonaceae family. Rev. Colomb. Cienc. Hortícolas 13, 371–383. https://doi.org/10.17584/rcch.2019vl3i3.9489.
  29. Hamel, D., Rozman, V., Liška, A. 2020. Storage of Cereals in Warehouses with or without Pesticides. Insects 11, 846. https://doi.org/10.3390/insects11120846.
  30. Hung, N.H., Quan, P.M., Satyal, P., Dai, D.N., Hoa, V.V., Huy, N.G., Giang, L.D., Ha, N.T., Huong, L.T., Hien, V.T., Setzer, W.N. 2022. Acetylcholinesterase Inhibitory Activities of Essential Oils from Vietnamese Traditional Medicinal Plants. Molecules 27, 7092. https://doi.org/10.3390/molecules27207092.
  31. Islam, Md.A., Amin, S.M.N., Rahman, M.A., Juraimi, A.S., Uddin, Md.K., Brown, C.L., Arshad, A. 2022. Chronic effects of organic pesticides on the aquatic environment and human health: A review. Environ. Nanotechnol. Monit. Manag. 18, 100740. https://doi.org/10.1016/j.enmm.2022.100740.
  32. Jaramillo Colorado, B.E., Martelo, I.P., Duarte, E. 2012. Antioxidant and Repellent Activities of the Essential Oil from Colombian Triphasia trifolia (Burm. f.) P. Wilson. J. Agric. Food Chem. 60, 6364–6368. https://doi.org/10.1021/jf300461k.
  33. Jaramillo, M.A., Manos, P.S. 2001. Phylogeny and patterns of floral diversity in the genus Piper (Piperaceae). Am. J. Bot. 88, 706–716. https://doi.org/10.2307/2657072.
  34. Jaramillo, M.A., Manos, P.S., Zimmer, E.A. 2004. Phylogenetic Relationships of the Perianthless Piperales: Reconstructing the Evolution of Floral Development. Int. J. Plant Sci. 165, 403–416. https://doi.org/10.1086/382803.
  35. Jaramillo-Colorado, B.E., Karen, M.C., Edisson, D.R., Elena, S., Jesus, O.V. 2014. Volatile Secondary Metabolites from Colombian Croton malambo (Karst) by Different Extraction Methods and Repellent Activity of its Essential Oil. J. Essent. Oil Bear. Plants 17, 992–1001. https://doi.org/10.1080/0972060X.2014.895185.
  36. Jaramillo-Colorado, B.E., Pino-Benitez, N., González-Coloma, A. 2019. Volatile composition and biocidal (antifeedant and phytotoxic) activity of the essential oils of four Piperaceae species from Choco-Colombia. Ind. Crops Prod. 138, 111463. https://doi.org/10.1016/j.indcrop.2019.06.026.
  37. Jassal, K., Kaushal, S., Rashmi, null, Rani, R. 2021. Antifungal potential of guava (Psidium guajava) leaves essential oil, major compounds: beta-caryophyllene and caryophyllene oxide. Arch. Phytopathol. Plant Prot. 54, 2034–2050. https://doi.org/10.1080/03235408.2021.1968287.
  38. Jiménez-Durán, A., Barrera-Cortés, J., Lina-García, L.P., Santillan, R., Soto-Hernández, R.M., Ramos-Valdivia, A.C., Ponce-Noyola, T., Ríos-Leal, E. 2021. Biological Activity of Phytochemicals from Agricultural Wastes and Weeds on Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Sustainability 13, 13896. https://doi.org/10.3390/su132413896.
  39. Kamanula, J.F., Belmain, S.R., Hall, D.R., Farman, D.I., Goyder, D.J., Mvumi, B.M., Masumbu, F.F., Stevenson, P.C. 2017. Chemical variation and insecticidal activity of Lippia javanica (Burm. f.) Spreng essential oil against Sitophilus zeamais Motschulsky. Ind. Crops Prod., The 2nd International Conference on Pesticidal Plants (ICPP2) 110, 75–82. https://doi.org/10.1016/j.indcrop.2017.06.036.
  40. Karakaya, S., Yilmaz, S.V., Özdemir, Ö., Koca, M., Pınar, N.M., Demirci, B., Yıldırım, K., Sytar, O., Turkez, H., Baser, K.H.C. 2020. A caryophyllene oxide and other potential anticholinesterase and anticancer agent in Salvia verticillata subsp. amasiaca (Freyn & Bornm.) Bornm. (Lamiaceae). J. Essent. Oil Res. 32, 512–525. https://doi.org/10.1080/10412905.2020.1813212.
  41. Karemu, C.K., Ndung’u, M.W., Githua, M. 2013. Repellent effects of essential oils from selected eucalyptus species and their major constituents against Sitophilus zeamais (Coleoptera: Curculionidae). Int. J. Trop. Insect Sci. 33, 188–194. https://doi.org/10.1017/S1742758413000179.
  42. Karimi, A., Krähmer, A., Herwig, N., Hadian, J., Schulz, H., Meiners, T. 2020. Metabolomics Approaches for Analyzing Effects of Geographic and Environmental Factors on the Variation of Root Essential Oils of Ferula assa-foetida L. J. Agric. Food Chem. 68, 9940–9952. https://doi.org/10.1021/acs.jafc.0c03681.
  43. Kaur, A., Kaur, S., Jandrotia, R., Singh, H.P., Batish, D.R., Kohli, R.K., Rana, V.S., Shakil, N.A. 2021. Parthenin—A Sesquiterpene Lactone with Multifaceted Biological Activities: Insights and Prospects. Molecules 26, 5347. https://doi.org/10.3390/molecules26175347.
  44. Khursheed, A., Rather, M.A., Jain, V., Wani, A.R., Rasool, S., Nazir, R., Malik, N.A., Majid, S.A. 2022. Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb. Pathog. 173, 105854. https://doi.org/10.1016/j.micpath.2022.105854.
  45. Kim, S., Yoon, J., Tak, J.-H. 2021. Synergistic mechanism of insecticidal activity in basil and mandarin essential oils against the Tobacco cutworm. J. Pest Sci. 94, 1119–1131. https://doi.org/10.1007/s10340-021-01345-8.
  46. Koyama, S., Heinbockel, T. 2020. The Effects of Essential Oils and Terpenes in Relation to Their Routes of Intake and Application. Int. J. Mol. Sci. 21, 1558. https://doi.org/10.3390/ijms21051558.
  47. Le, N.V., Sam, L.N., Huong, L.T., Ogunwande, I.A. 2022. Chemical Compositions of Essential Oils and Antimicrobial Activity of Piper albispicum C. DC. from Vietnam. J. Essent. Oil Bear. Plants 25, 82–92. https://doi.org/10.1080/0972060X.2022.2032840.
  48. Luz, A.I.R., Zoghbi, M. das G.B., Maia, J.G.S. 2003. Os Óleos Essenciais de Piper reticulatum L. e P. crassinervium H.B.K. Acta Amaz. 33, 341–344. https://doi.org/10.1590/1809-4392200332344.
  49. Ma, S., Jia, R., Guo, M., Qin, K., Zhang, L. 2020. Insecticidal activity of essential oil from Cephalotaxus sinensis and its main components against various agricultural pests. Ind. Crops Prod. 150, 112403. https://doi.org/10.1016/j.indcrop.2020.112403.
  50. Manosathiyadevan, M., Bhuvaneshwari, V., Latha, R. 2017. Impact of Insects and Pests in loss of Crop Production: A Review, in: Dhanarajan, A. (Ed.), Sustainable Agriculture towards Food Security. Springer, Singapore, pp. 57–67. https://doi.org/10.1007/978-981-10-6647-4_4.
  51. Mattar, V.T., Borioni, J.L., Hollmann, A., Rodriguez, S.A. 2022. Insecticidal activity of the essential oil of Schinus areira against Rhipibruchus picturatus (F.) (Coleoptera: Bruchinae), and its inhibitory effects on acetylcholinesterase. Pestic. Biochem. Physiol. 185, 105134. https://doi.org/10.1016/j.pestbp.2022.105134.
  52. Mssillou, I., Saghrouchni, H., Saber, M., Zannou, A.J., Balahbib, A., Bouyahya, A., Allali, A., Lyoussi, B., Derwich, E. 2022. Efficacy and role of essential oils as bio-insecticide against the pulse beetle Callosobruchus maculatus (F.) in post-harvest crops. Ind. Crops Prod. 189, 115786. https://doi.org/10.1016/j.indcrop.2022.115786.
  53. Müller, G.C., Junnila, A., Butler, J., Kravchenko, V.D., Revay, E.E., Weiss, R.W., Schlein, Y. 2009. Efficacy of the botanical repellents geraniol, linalool, and citronella against mosquitoes. J. Vector Ecol. 34, 2–8. https://doi.org/10.1111/j.1948-7134.2009.00002.x.
  54. Muñoz-Acevedo, A., González, M.C., De Moya, Y.S., Rodríguez, J.D. 2023. Volatile Metabolites of Piper eriopodon (Miq.) C.DC. from Northern Region of Colombia and Assessment of In Vitro Bioactivities of the Leaf Essential Oil. Molecules 28, 2594. https://doi.org/10.3390/molecules28062594.
  55. Murtaza, M., Hussain, A.I., Kamal, G.M., Nazir, S., Chatha, S.A.S., Asmari, M., Uddin, J., Murtaza, S. 2023. Potential Applications of Microencapsulated Essential Oil Components in Mosquito Repellent Textile Finishes. Coatings 13, 1467. https://doi.org/10.3390/coatings13081467.
  56. Nwosu, L.C. 2018. Maize and the maize weevil: advances and innovations in postharvest control of the pest. Food Qual. Saf. 2, 145–152. https://doi.org/10.1093/fqsafe/fyy011.
  57. Papanastasiou, S.A., Ioannou, C.S., Papadopoulos, N.T. 2020. Oviposition-deterrent effect of linalool – a compound of citrus essential oils – on female Mediterranean fruit flies, Ceratitis capitata (Diptera: Tephritidae). Pest Manag. Sci. 76, 3066–3077. https://doi.org/10.1002/ps.5858.
  58. Peschiutta, M.L., Achimón, F., Brito, V.D., Pizzolitto, R.P., Zygadlo, J.A., Zunino, M.P. 2022. Fumigant toxicity of essential oils against Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae): a systematic review and meta-analysis. J. Pest Sci. 95, 1037–1056. https://doi.org/10.1007/s10340-021-01457-1.
  59. Ram, K., Singh, R. 2021. Efficacy of different fungicides and biopesticides for the management of lentil wilt (Fusarium oxysporum f. sp. lentis): Management of lentil wilt. J. AgriSearch. 8, 55–58. https://doi.org/10.21921/jas.v8i01.19565.
  60. Rees, D. 2007. Insects of Stored Grain: A Pocket Reference. Csiro Publishing.
  61. Ruiz-Vásquez, L., Ruiz Mesia, L., Caballero Ceferino, H.D., Ruiz Mesia, W., Andrés, M.F., Díaz, C.E., Gonzalez-Coloma, A. 2022. Antifungal and Herbicidal Potential of Piper Essential Oils from the Peruvian Amazonia. Plants 11, 1793. https://doi.org/10.3390/plants11141793.
  62. Salehi, B., Zakaria, Z.A., Gyawali, R., Ibrahim, S.A., Rajkovic, J., Shinwari, Z.K., Khan, T., Sharifi-Rad, J., Ozleyen, A., Turkdonmez, E., Valussi, M., Tumer, T.B., Monzote Fidalgo, L., Martorell, M., Setzer, W.N. 2019. Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications. Molecules 24, 1364. https://doi.org/10.3390/molecules24071364.
  63. San Juan, M.R.F., Lavarías, S.M.L., Aparicio, V., Larsen, K.E., Lerner, J.E.C., Cortelezzi, A. 2023. Ecological risk assessment of pesticides in sediments of Pampean streams, Argentina. Chemosphere 313, 137598. https://doi.org/10.1016/j.chemosphere.2022.137598.
  64. Santana, A. da S., Baldin, E.L.L., Santos, T.L.B. dos, Baptista, Y.A., Santos, M.C. dos, Lima, A.P.S., Tanajura, L.S., Vieira, T.M., Crotti, A.E.M. 2022. Synergism between essential oils: A promising alternative to control Sitophilus zeamais (Coleoptera: Curculionidae). Crop Prot. 153, 105882. https://doi.org/10.1016/j.cropro.2021.105882.
  65. Santana, A.I., Vila, R., Cañigueral, S., Gupta, M.P. 2016. Chemical Composition and Biological Activity of Essential Oils from Different Species of Piper from Panama. Planta Med. 82, 986–991. https://doi.org/10.1055/s-0042-108060.
  66. Silva, M.A. da, Passarini, G.M., Martinez, L. do N., Facundo, V.A., Teles, C.G.B., Kuehn, C.C. 2019. Chemical constituents and bioactivities of essential oils from the genus Piper (Piperaceae): A REVIEW. South Am. J. Basic Educ. Tech. Technol. 6, 776–817.
  67. Smith, G.H., Roberts, J.M., Pope, T.W. 2018. Terpene based biopesticides as potential alternatives to synthetic insecticides for control of aphid pests on protected ornamentals. Crop Prot. 110, 125–130. https://doi.org/10.1016/j.cropro.2018.04.011.
  68. Stejskal, V., Vendl, T., Aulicky, R., Athanassiou, C. 2021. Synthetic and Natural Insecticides: Gas, Liquid, Gel and Solid Formulations for Stored-Product and Food-Industry Pest Control. Insects 12, 590. https://doi.org/10.3390/insects12070590.
  69. Vasantha-Srinivasan, P., Chellappandian, M., Senthil-Nathan, S., Ponsankar, A., Thanigaivel, A., Karthi, S., Edwin, E.-S., Selin-Rani, S., Kalaivani, K., Maggi, F., Benelli, G. 2018. A novel herbal product based on Piper betle and Sphaeranthus indicus essential oils: Toxicity, repellent activity and impact on detoxifying enzymes GST and CYP450 of Aedes aegypti Liston (Diptera: Culicidae). J. Asia-Pac. Entomol. 21, 1466–1472. https://doi.org/10.1016/j.aspen.2018.10.008.
  70. Vásquez-Ocmín, P.G., Gallard, J.-F., Van Baelen, A.-C., Leblanc, K., Cojean, S., Mouray, E., Grellier, P., Guerra, C.A.A., Beniddir, M.A., Evanno, L., Figadère, B., Maciuk, A. 2022. Biodereplication of Antiplasmodial Extracts: Application of the Amazonian Medicinal Plant Piper coruscans Kunth. Molecules 27, 7638. https://doi.org/10.3390/molecules27217638.
  71. Wang, B., Sui, J., Yu, B., Yuan, C., Guo, L., Abd El-Aty, A.M., Cui, B. 2021. Physicochemical properties and antibacterial activity of corn starch-based films incorporated with Zanthoxylum bungeanum essential oil. Carbohydr. Polym. 254, 117314. https://doi.org/10.1016/j.carbpol.2020.117314
  72. Wang, Y., Zhang, L.-T., Feng, Y.-X., Guo, S.-S., Pang, X., Zhang, D., Geng, Z.-F., Du, S.-S. 2019. Insecticidal and repellent efficacy against stored-product insects of oxygenated monoterpenes and 2-dodecanone of the essential oil from Zanthoxylum planispinum var. dintanensis. Environ. Sci. Pollut. Res. 26, 24988–24997. https://doi.org/10.1007/s11356-019-05765-z.
  73. Wei, X.-M., Guo, S.-S., Yan, H., Cheng, X.-L., Wei, F., Du, S.-S. 2018. Contact Toxicity and Repellency of the Essential Oil from Bupleurum bicaule Helm against Two Stored Product Insects. J. Chem. 2018, e5830864. https://doi.org/10.1155/2018/5830864.
  74. Whitehead, S.R., Bowers, M.D. 2014. Chemical ecology of fruit defence: synergistic and antagonistic interactions among amides from Piper. Funct. Ecol. 28, 1094–1106. https://doi.org/10.1111/1365-2435.12250.
  75. Whitehead, S.R., Jeffrey, C.S., Leonard, M.D., Dodson, C.D., Dyer, L.A., Bowers, M.D. 2013. Patterns of Secondary Metabolite Allocation to Fruits and Seeds in Piper reticulatum. J. Chem. Ecol. 39, 1373–1384. https://doi.org/10.1007/s10886-013-0362-4.
  76. Yang, K., Wang, C.F., You, C.X., Geng, Z.F., Sun, R.Q., Guo, S.S., Du, S.S., Liu, Z.L., Deng, Z.W. 2014. Bioactivity of essential oil of Litsea cubeba from China and its main compounds against two stored product insects. J. Asia-Pac. Entomol. 17, 459–466. https://doi.org/10.1016/j.aspen.2014.03.011.
  77. Yıldırım, E., Emsen, B., Kordalı, S. 2013. İnsecticidal effects of monoterpenes on Sitophilus zeamais motschulsky (Coleoptera: Curculionidae). https://doi.org/10.5073/JABFQ.2013.086.027.
  78. Yuan, L., Yang, X., Yu, X., Wu, Y., Jiang, D. 2019. Resistance to insecticides and synergistic and antagonistic effects of essential oils on dimefluthrin toxicity in a field population of Culex quinquefasciatus Say. Ecotoxicol. Environ. Saf. 169, 928–936. https://doi.org/10.1016/j.ecoenv.2018.11.115.
  79. Zhang, L.-L., Chen, Y., Li, Z.-J., Fan, G., Li, X. 2023. Production, Function, and Applications of the Sesquiterpenes Valencene and Nootkatone: a Comprehensive Review. J. Agric. Food Chem. 71, 121–142. https://doi.org/10.1021/acs.jafc.2c07543.

Downloads

Download data is not yet available.