Isolation and molecular identification of contaminating fungi in vegetable seeds: Topito type sweet pepper (Capsicum sinense); winter squash (Cucurbita moschata) and eggplant (Solanum melongena) of economic importance in the Colombian Caribbean Coast

Abstract
Fungal contamination of Topito-type sweet pepper (Capsicum chinense), eggplant (Solanum melongena), and winter squash (Cucurbita moschata) seeds in the Colombian Caribbean represents a major threat to small-scale horticultural production. This study aimed to identify fungal contaminants through seeds incubation on potato dextrose agar, followed by morphological and molecular characterization via amplification of the ITS1 and ITS4 regions of the internal transcribed spacer (ITS). A total of 32 fungal isolates were obtained, classified into 25 morphotypes. Amplicon sizes ranged from 497 to 1,452 bp, with identity percentages between 89% and 100% compared to GenBank reference sequences. Winter squash PST1 exhibited contamination in 37% of seeds, predominantly by Fusarium equiseti (26%), while Topito-type sweet pepper DTP1 showed 37% contamination, with Penicillium citrinum (16%) as the most frequent species. Eggplant varieties Bv1 and Bv2 presented a higher diversity of fungal contaminants, including Curvularia lunata, Fusarium oxysporum, and Schizophyllum commune. The identified fungi included saprophytic and potentially pathogenic species associated with plant necrosis and seed deterioration. Morphological analysis revealed distinct macroscopic and microscopic traits, such as Fusarium spp.'s canoe-shaped macroconidia and Penicillium citrinum's brush-like conidial structures. This study provides new insights into fungal contamination in vegetable seeds, identifying previously unreported species in these crops. The findings highlight the need to refine production protocols to enhance contaminant prevention. Additionally, the presence of fungi in stored seeds underscores the importance of proper humidity and temperature control during storage to prevent pathogen proliferation and ensure seed quality, contributing to more sustainable horticultural production in the region.
Keywords
Fungus, Pathogenic fungus, Seed, Vegetable, Seed quality, Plant health
References
- Abada, K.A. and M.A. Ahmed. 2014. Management of Fusarium wilt of sweet pepper by Bacillus strains. Am. J. Life Sci. 2(6-2), 19-25. Doi: https://doi.org/10.11648/j.ajls.s.2014020602.13
- Agrios, G.N. 2005. Plant pathology. 7th ed. Academic Press, San Diego, CA. pp. 223-240.
- Akter, H., I. Ara, N.B. Alam, and N. Alam. 2024. The first report of Aspergillus ochraceopetaliformis Bat. & Maia from small indigenous dry fish Setipinna phasa (Hamilton 1822) in Bangladesh. Jahangirnagar Univ. J. Biol. Sci. 12(1), 87-95. Doi: https://doi.org/10.3329/jujbs.v12i1.74476
- Atiq, M., I. Naeem, N.A. Rajput, M. Usman, S. Iqbal, A. Nawaz, T. Fatima, F. Yaqoob, M. Kashif, and M. Ashraf. 2022. Screening of brinjal accessions against leaf blight (Curvularia lunata) in relation to epidemiological factors. J. Agric. Food 3(1), 22-33. Doi: https://doi.org/10.52587/JAF030301
- Baglan, M., G.E. Mwalupaso, X. Zhou, and X. Geng. 2020. Towards cleaner production: Certified seed adoption and its effect on technical efficiency. Sustainability 12(4), 1344. Doi: https://doi.org/10.3390/su12041344
- Barnett, H.L. and B.B. Hunter. 1972. Illustrated genera of imperfect fungi. 3rd ed. Burgess Publishing, Minneapolis, MN.
- Boixel, A.-L., T. Rouxel, D. Andrivon, M. Affichard, and C. Le May. 2024. Slipping through the cracks: Challenges and prospects for investigating fungal plant disease complexes. Crop Prot. 184, 106826. Doi: https://doi.org/10.1016/j.cropro.2024.106826
- Bradshaw, M.J., M.C. Aime, A. Rokas, A. Maust, S. Moparthi, K. Jellings, A.M. Pane, D. Hendricks, B. Pandey, Y. Li, and D.H. Pfister. 2023. Extensive intragenomic variation in the internal transcribed spacer region of fungi. IScience 26(8), 107317. Doi: https://doi.org/10.1016/j.isci.2023.107317
- Castillo Najar, W. 2019. Incidencia de hongos ocratoxigénicos en granos de maíz provenientes de distintos sistemas de almacenamiento. MSc thesis. Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.
- Chinnasamy, S., S.A. Nariyampet, A.J.A. Hajamohideen, M. Zeeshan, W. Dawlath, A.W.M. Pakir, and S. Afreen. 2023. Molecular identification of Ascomycota fungi using ITS region as DNA barcodes. J. Biochem. Technol. 14(1), 45-49. Doi: https://doi.org/10.51847/G3KFX7gJOs
- Cruz-Cerino, P., J. Cristóbal-Alejo, V. Ruiz-Carrera, and M. Gamboa-Angulo. 2023. Plant extracts from the Yucatan Peninsula in the in vitro control of Curvularia lunata and antifungal effect of Mosannona depressa and Piper neesianum extracts on postharvest fruits of habanero pepper. Plants 12(16), 2908. Doi: https://doi.org/10.3390/plants12162908
- Demir, E., N. Özer, and H. Bayraktar. 2023. Identification of seed-borne fungi in summer (Cucurbita pepo) and winter (Cucurbita moschata) pumpkins of Turkey. J. Plant Pathol. 105, 1087–1101. Doi: 10.1007/s42161-023-01451-9
- El-Baky, N.A. and A.A. Amara. 2021. Recent approaches towards control of fungal diseases in plants: an updated review. J. Fungi 7(11), 900. Doi: https://doi.org/10.3390/jof7110900
- Engalycheva, I., E. Kozar, S. Frolova, S. Vetrova, T. Tikhonova, E. Dzhos, M. Engalychev, V. Chizhik, V. Martynov, A. Shingaliev, K. Dudnikova, M. Dudnikov, and Y. Kostanchuk. 2024. Fusarium species causing pepper wilt in Russia: Molecular identification and pathogenicity. Microorganisms 12(2), 343. Doi: https://doi.org/10.3390/microorganisms12020343
- FAO and CIRAD. 2021. Fruits and vegetables: opportunities and challenges for small-scale sustainable agriculture. Rome. Doi: https://doi.org/10.4060/cb4173en
- Gálvez, I.M.P., V.A. Escobar, E.O. Cervantes, A.R.G. Hernández, and S.A. Ocampo. 2021. Schizophyllum commune Fr. associated with Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. in Mexico. Rev. Mex. Cienc. Forest. 12(66), 181-198. Doi: https://doi.org/10.29298/rmcf.v12i66.806
- Gardes, M. and T.D. Bruns. 1993. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol. Ecol. 2(2), 113-118. Doi: https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
- Ghosh, D., S. Dey, H. Chakraborty, S. Mukherjee, A. Halder, A. Sarkar, P. Chakraborty, R. Ghosh, and J. Sarkar. 2022. Mucormycosis: A new threat to Coronavirus disease 2019 with special emphasis on India. Clin. Epidemiol. Glob. Health 15, 101013. Doi: https://doi.org/10.1016/j.cegh.2022.101013
- Griffith, G.W. and D.S. Shaw. 1998. Polymorphisms in Phytophthora infestans: Four mitochondrial haplotypes are detected after PCR amplification of DNA from pure cultures or from host lesions. Appl. Environ. Microbiol. 64(10), 4007-4014. Doi: https://doi.org/10.1128/aem.64.10.4007-4014.1998
- Gudisa, R., R. Harchand, and S.M. Rudramurthy. 2024. Nucleic-acid-based molecular fungal diagnostics: A way to a better future. Diagnostics 14(5), 520. Doi: https://doi.org/10.3390/diagnostics14050520
- Haapalainen, M., S. Latvala, E. Kuivainen, Y. Qiu, M. Segerstedt, and A. O. Hannukkala. 2016. Fusarium oxysporum, F. proliferatum, and F. redolens associated with basal rot of onion in Finland. Plant Pathol. 65(6), 1045-1057. Doi: https://doi.org/10.1111/ppa.12521
- Hami, A., R.S. Rasool, N.A. Khan, S. Mansoor, M.A. Mir, N. Ahmed, and K.Z. Masoodi. 2021. Morpho-molecular identification and first report of Fusarium equiseti causing chili wilt from Kashmir (Northern Himalayas). Sci. Rep. 11, 3610. Doi: https://doi.org/10.1038/s41598-021-82940-5
- Iquebal, M.A., S. Jaiswal, V.K. Mishra, R.S. Jasrotia, U.B. Angadi, B.P. Singh, A.K. Passari, P. Deka, R. Prabha, D.P. Singh, V.K. Gupta, R.S. Tomar, H.S. Oberoi, A. Rai, and D. Kumar. 2021. Fungal genomic resources for strain identification and diversity analysis of 1900 fungal species. J. Fungi 7(4), 288. Doi: https://doi.org/10.3390/jof7040288
- Kauserud, H. 2023. ITS alchemy: On the use of ITS as a DNA marker in fungal ecology. Fungal Ecol. 65, 101274. Doi: https://doi.org/10.1016/j.funeco.2023.101274
- Lezcano, J.C., O. Alonso, and M. Navarro. 2015. Población fungosa asociada al proceso germinativo de semillas almacenadas de Leucaena leucocephala cv. Perú. Pastos Forrajes 38(3), 164-170.
- Li, X., C. Zhao, T. Zhang, G. Wang, E. Amombo, Y. Xie, and J. Fu. 2021. Exogenous Aspergillus aculeatus enhances drought and heat tolerance of perennial ryegrass. Front. Microbiol. 12, 593722. Doi: https://doi.org/10.3389/fmicb.2021.593722
- Liu, Z., Y. Deng, S. Ma, B.-J. He, and G. Cao. 2021a. Dust accumulated fungi in air-conditioning system: Findings based on field and laboratory experiments. Build. Simul. 14(4), 793-811. Doi: https://doi.org/10.1007/s12273-020-0693-3
- Liu, S., J. Wang, N. Guo, H. Sun, H. Ma, H. Zhang, and J. Shi. 2021b. Talaromyces funiculosus, a novel causal agent of maize ear rot and its sensitivity to fungicides. Plant Dis. 105(12), 3978-3984. Doi: https://doi.org/10.1094/PDIS-04-21-0686-RE
- Liu, Q., Q. Chen, H. Liu, Y. Du, W. Jiao, F. Sun, and M. Fu. 2024a. Rhizopus stolonifer and related control strategies in postharvest fruit: A review. Heliyon 10(8), e29522. Doi: https://doi.org/10.1016/j.heliyon.2024.e29522
- Liu, X., R. Liu, Y. Su, Y. Jiang, H. Deng, Y. Zhang, C. Han, and W. Zhong. 2024b. Screening and identification of a soil-derived strain Penicillium ludwigii X-16 and its organic and inorganic nitrogen utilization characteristics. Chin. J. Appl. Envir. Biol. 30(2), 301-308. Doi: https://doi.org/10.19675/j.cnki.1006-687x.2023.03023
- Mahajan, M. 2022. Schizophyllum commune. Emerg. Infect. Dis. 28(3), 725. Doi: https://doi.org/10.3201/eid2803.211051
- Maldonado López, E.Y. and K.I. Romero de Grande. 2022. Evaluación de Saccharomyces boulardii en la reducción de colonias de Penicillium y Aspergillus en granos de café oro y pergamino. PhD thesis. Universidad de El Salvador, San Salvador.
- Mancini, V., S. Murolo, and G. Romanazzi. 2016. Diagnostic methods for detecting fungal pathogens on vegetable seeds. Plant Pathol. 65(5), 691-703. Doi: https://doi.org/10.1111/ppa.12515
- Manikandan, K., V. Shanmugam, V.K. Sidharthan, P. Saha, M.S. Saharan, and D. Singh. 2024. Characterization of field isolates of Fusarium spp. from eggplant in India for species complexity and virulence. Microb. Pathog. 186, 106472. Doi: https://doi.org/10.1016/j.micpath.2023.106472
- Marcinkowska, J.Z. 2002. Methods of finding and identification of pathogens in seeds. Plant Breed. Seed Sci. 46, 31-48.
- Martínez Reina, A.M., E.M. Correa Álvarez, J.L. Romero Ferrer, A.P. Tofiño Rivera, C.C. Cordero Cordero, L.M. Grandett Martínez, L. Tordecilla Zumaqué, M.V. Rodríguez Pinto, Y. Rozo Leguizamón, Y. Romero Barrera, J.A. Sierra Monrroy, A.R. Orozco Guerrero, and G.E. Silva Acosta. 2020. El cultivo de hortalizas en la región Caribe de Colombia. Aspectos tecnológicos, económicos y de mercado. Corporación Colombiana de Investigación Agropecuaria – Agrosavia, Mosquera, Colombia. Doi: https://doi.org/10.21930/agrosavia.investigation.7404074
- Matrood, A.N. 2018. Biocontrol of the cladosporic spot in the eggplant plant caused by the fungus Cladosporium cladosporioides. Arab J. Plant Prot. 36(3), 192-198. Doi: https://doi.org/10.22268/AJPP-036.3.192198
- Mohanto, R.C., S.A. Shahriar, A.N.F. Ahmmed, F.A. Nishi, and M.N. Khatun Eaty. 2019. Prevalence of seed-borne fungi of different vegetable seeds in Bangladesh. Res. Biotechnol. 10(1), 1-5. Doi: https://doi.org/10.25081/rib.2019.v10.5513
- Nguyen, H.C., K.-H. Lin, T.P. Nguyen, H.S. Le, K.N. Ngo, D.C. Pham, T.N. Tran, C.-H. Su, and C.J. Barrow. 2023. Isolation and cultivation of Penicillium citrinum for biological control of Spodoptera litura and Plutella xylostella. Fermentation 9(5), 438. Doi: https://doi.org/10.3390/fermentation9050438
- Ordóñez Erazo, M.M., H. Pabón, A. Martínez, A. Figueroa Casas, M. Lopera, J. Homez, R. Probst, Y. Páez, G. Moreno, C. Bustamante, and F. Pinzón. 2009. Guía ambiental hortifrutícola de Colombia. Asoc. Hortifrutícola Colombia, Min. Ambiente, Vivienda y Desarrollo Territorial, Bogotá, Colombia.
- Peng, Y., S.J. Li, J. Yan, Y. Tang, J.P. Cheng, A.J. Gao, X. Yao, J.J. Ruan, and B.L. Xu. 2021. Research progress on phytopathogenic fungi and their role as biocontrol agents. Front. Microbiol. 12, 670135. Doi: https://doi.org/10.3389/fmicb.2021.670135
- Pérez, I. and K.C.S. Espinosa. 2019. Aspectos fisiológicos del género Cladosporium desde la perspectiva de sus atributos patogénicos, fitopatogénicos y biodeteriorantes. Rev. Cub. Cienc. Biol. 7(1), 10.
- Priwiratama, H., S. Wiyono, S.H. Hidayat, S. Wening, and E.T. Tondok. 2024. Identification and characterization of Curvularia, the causal agent of leaf spot disease of oil palm seedlings in Indonesia. J. Saudi Soc. Agric. Sci. In press. Doi: https://doi.org/10.1016/j.jssas.2024.10.003
- Raja, H.A., A.N. Miller, C.J. Pearce, and N.H. Oberlies. 2017. Fungal identification using molecular tools: a primer for the natural products research community. J. Nat. Prod. 80(3), 756-770. Doi: https://doi.org/10.1021/acs.jnatprod.6b01085
- Satam, H., K. Joshi, U. Mangrolia, S. Waghoo, G. Zaidi, S. Rawool, R.P. Thakare, S. Banday, A. K. Mishra, G. Das, and S.K. Malonia. 2023. Next-generation sequencing technology: Current trends and advancements. Biology 12(7), 997. Doi: https://doi.org/10.3390/biology12070997
- Salem-Bango, Z., T.K. Price, J.L. Chan, S. Chandrasekaran, O.B. Garner, and S. Yang. 2023. Fungal whole-genome sequencing for species identification: From test development to clinical utilization. J. Fungi. 9(2), 183. Doi: https://doi.org/10.3390/jof9020183
- Shafique, S., S. Shafique, S. Sahar, and N. Akhtar. 2019. First report of Cladosporium cladosporioides instigating leaf spot of Solanum melongena from Pakistan. Pak. J. Bot. 51(2), 755-759. Doi: https://doi.org/10.30848/PJB2019-2(43)
- Silva, D.M.C., R.M.N. Marcusso, C.G.G. Barbosa, F.L.T. Gonçalves, and M.R.A. Cardoso. 2020. Air pollution and its impact on the concentration of airborne fungi in the megacity of São Paulo, Brazil. Heliyon 6(10), e05065. Doi: https://doi.org/10.1016/j.heliyon.2020.e05065
- Singh, S., C. Raj, H.K. Singh, R.K. Avasthe, P. Said, A. Balusamy, S.K. Sharma, S.C. Lepcha, and V. Kerketta. 2021. Characterization and development of cultivation technology of the wild mushroom Schizophyllum commune from split gills in India. Sci. Hortic. 289, 110399. Doi: https://doi.org/10.1016/j.scienta.2021.110399
- The CIMMYT Maize Program. 2004. Maize diseases: a guide for field identification. 4th ed. CIMMYT, Mexico, DF.
- Thomas, L. and P. Tennant. 2019. First report of leaf spot on Cucurbita pepo caused by Fusarium incarnatum-equiseti species complex in Jamaica. New Dis. Rep. 40(1), 6. Doi: https://doi.org/10.5197/j.2044-0588.2019.040.006
- Tibpromma, S., P.E. Mortimer, S.C. Karunarathna, F. Zhan, J. Xu, I. Promputtha, and K. Yan. 2019. Morphology and multi-gene phylogeny reveal Pestalotiopsis pinicola sp. nov. and a new host record of Cladosporium anthropophilum from edible pine (Pinus armandii) seeds in Yunnan Province, China. Pathogens 8, 285. Doi: https://doi.org/10.3390/pathogens8040285
- Toledo, A.V., M.E. Simurro, and P.A. Balatti. 2013. Morphological and molecular characterization of a fungus, Hirsutella sp., isolated from planthoppers and psocids in Argentina. J. Insect Sci. 13(18), 1-11. Doi: https://doi.org/10.1673/031.013.1801
- Vishunavat, K., Prabakar, K., and T. Anand. 2023. Seed health: Testing and management. pp. 261-276. In: Dadlani, M. and D.K. Yadava (eds.). Seed science and technology. Springer, Singapore. Doi: https://doi.org/10.1007/978-981-19-5888-5_14
- Wang, J., S. Wang, Z. Zhao, S. Lin, F. Van Hove, and A. Wu. 2019. Species composition and toxigenic potential of Fusarium isolates causing fruit rot of sweet pepper in China. Toxins 11(12), 690. Doi: https://doi.org/10.3390/toxins11120690
- White, T.J., T.D. Bruns, S.B. Lee, and J.W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315-322. In: PCR protocols: a guide to methods and applications. Academic Press, San Diego, CA.
- Zuparova, D., M. Ablazova, and M. Zuparov. 2023. Fungi in the main vegetable crop seeds and their fungal biological characteristics. BIO Web Conf. 65, 01016. Doi: https://doi.org/10.1051/bioconf/20236501016