Sap flow and water potential in tomato plants (<i>Solanum lycopersicum</i> L.) under greenhouse conditions

Main Article Content


Cristian Alejandro Cuellar-Murcia
Juan Carlos Suárez-Salazar


The tomato is one of the most important horticultural fruits in the world, with large scale horticultural production in Colombia, as seen in the cultivated area of 8,992 and 345,291 t produced. The development of this crop requires production areas under controlled conditions (greenhouses) because it is important to monitor the water status of the plants to achieve successful development. In order to predict the behavior of the water potential of xylem (ᴪ) and sap flow (FH2O) in relation to environmental variables (RAFA, HRa, Ta, DPV), a mechanical model of water flow in tomato plants (Solanum lycopersicum L.) was used under greenhouse conditions in Colombian Amazon piedmont (Florencia, Caquetá). The daily-monitored trends remained between 64.7 and 225.4 g h-1 and -1.2 to -0.34 MPa for FH2O and ᴪ, respectively. To model the behavior of the variables, these trends were between -0.38 and -1.30 MPa for ᴪ and 58.46 and 208.55 g h-1 for FH2O, which were highly correlated (P<0,0001). The use of a mechanical model of water flow in tomato plants under greenhouse conditions proved to be statistically and physiologically feasible for understanding the daily water demand and so can be a source of information when designing irrigation plans.


Article Details


The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.


Allen, R., S. Pereira, D. Raes y M. Smith. 2006. Evapotranspiración del cultivo: Guías para determinación los requerimientos de agua de los cultivos. Estudio Riego e Drenaje 56. FAO, Roma, Italia.

Ballester, C., J. Castel, L. Testi, D. Intrigliolo y J.R. Castel. 2013. Can heatpulse sap flow measurements be used as continuous water stress indicators of citrus trees?. J. Irrig Sci. 31, 1053-1063. Doi: 10.1007/s00271-012-0386-5

Bobich, E., G. Barron, K. Rascher y R. Murthy. 2010. Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO. Tree Physiol. 30, 866-875. Doi: 10.1093/treephys/tpq036

Both, A., L. Benjamin, J. Franklin, G. Holroyd, L. Incoll, M. Lefsrud y G. Pitkin. 2015. Guidelines for measuring and reporting environmental parameters for experiments in greenhouses. Plant Methods 11, 43-68. Doi: 10.1186/s13007-015-0083-5

Burgess, S., M. Adams, N. Turner. C, Beverly. C. Ong, A. Khan y T. Bleby. 2001. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree physiology. 21(9): 589-598. Doi: 10.1093/treephys/21.9.589

Caird, M., J. Richards y T. Hsiao. 2007. Significant transpirational water loss occurs throughout the night in field-grown tomato. Funct. Plant Biol. 34, 172-177. Doi: 10.1071/FP06264

DANE (Departamento Administrativo Nacional de Estadística) 2016. Encuesta nacional agropecuaria ENA 2015. Cód.: DIE-020-PD-01-r5_v7. Bogotá, Colombia.

De Swaef, T., V. De Schepper, M. Vandegehuchte y K. Steppe. 2015. Stem diameter variations as a versatile research tool in ecophysiology. Tree Physiol. 35(10), 1047-1061. Doi: 10.1093/treephys/tpv080

De Swaef, T., J. Hanssens, A. Cornelis y K. Steppe. 2013. Non-destructive estimation of root pressure using sap flow, stem diameter measurements and mechanistic modelling. Ann. Bot. 111, 271-282. Doi: 10.1093/aob/mcs249

De Swaef, T., C. Mellisho, A. Baert, V. De Schepper. A. Torrecillas, W. Conejero y K. Steppe. 2014. Model-assisted evaluation of crop load effects on stem diameter variations and fruit growth in peach. Trees 28(6), 1607-1622. Doi: 10.1007/s00468-014-1069-z

De Swaef, T. y K. Steppe. 2010. Linking stem diameter variations to sap flow, turgor and water potential in tomato. Funct. Plant Biol. 37, 429-438. Doi: 10.1071/FP09233

De Swaef, T., K. Verbist, W. Cornelis y K. Steppe. 2012. Tomato sap flow, stem and fruit growth in relation to water availability in rockwool growing medium. Plant Soil 350(1-2), 237-252. Doi: 10.1007/s11104-011-0898-4

Di Rienzo, J., F. Casanoves, M. Balzarini, L. Gonzalez, M. Tablada y C. Robledo. 2017. Infostat versión 2017. Grupo Infostat, FCA, Universidad Nacional de Córdoba, Córdoba, Argentina.

Easlon, H. y J. Richards. 2009. Drought response in self-compatible species of tomato (Solanaceae). Amer. J. Bot. 96, 605-611. Doi: 10.3732/ajb.0800189

FAOSTAT. 2015. Production/yield quantities of tomatoes in world. En: FAOSTAT.; consulta: agosto de 2017.

Fricke, W. 2016. Water transport and energy. Plant Cell Environ. 40, 977-994. Doi: 10.1111/pce.12848

García, A., R. Cun y L. Montero. 2010. Efecto de la hora del día en el potencial hídrico foliar del sorgo y su relación con la humedad en el suelo. Rev. Cienc. Téc. Agropecu. 19(3), 7-11.

Gong, D., J. Wang y S. Kang. 2001. Variations of stem and root sap flow of peach tree under different water status. Transactions of the CSAE 17(4), 33-37.

Guangcheng, S., H. Doudou, C. Xi, C. Jingtao y Z. Zhenhua. 2016. Path analysis of sap flow of tomato under rain shelters in response to drought stress. Int. J. Agric. Biol. Eng. 9(2), 54-62.

Ismail, S. 2010. Influence of deficit irrigation on water use efficiency and bird pepper production (Capsicum annum L.). Meteor. Environ. Arid Land Agric. Sci. 21, 29- 43. Doi: 10.4197/met.21-2.3

Liu, H., M. Genard, S. Guichard y N. Bertin. 2007. Model-assisted analysis of tomato fruit growth in relation to carbon and water fluxes. J. Exp. Bot. 58, 3567-3580. Doi: 10.1093/jxb/erm202

Martínez, J., R. Poyatos, D. Aguadé, J. Retana y M. Mencuccini. 2014. A new look at water transport regulation in plants. New Phytologist 204(1), 105-115. Doi: 10.1111/nph.12912

Meng, Z., A. Duan, D. Chen, B. Dassanayake, X. Wang, Z. Liu y S. Gao. 2017. Suitable indicators using stem diameter variation-derived indices to monitor the water status of greenhouse tomato plants. PloS one 12(2), e0171423. Doi: 10.1371/journal.pone.0171423

Miner, G., J. Ham y G. Kluitenberg. 2017. A heat-pulse method for measuring sap flow in corn and sunflower using 3D-printed sensor bodies and low-cost electronics. Agric. For. Meteor. 246, 86-97. Doi: 10.1016/j.agrformet.2017.06.012

Patankar, R., W. Quinton y J. Baltzer. 2013. Permafrost-driven differences in habitat quality determine plant response to gall-inducing mite herbivory. J. Ecol. 101, 1042-1052. Doi: 10.1111/1365-2745.12101

Qiu, R., T. Du, K. Shaozhong, R. Chen y L. Wu. 2015. Influence of water and nitrogen stress on stem sap flow of tomato grown in a solar greenhouse. J. Amer. Soc. Hort. Sci. 140(2), 111-119.

Quintal, W., A. Pérez, L. Latournerie, C. May, E. Ruiz y A. Martínez. 2012. Uso de agua, potencial hídrico y rendimiento de chile habanero (Capsicum chinense Jacq.). Rev. Fitotec. Mex. 35(2), 155-160.

Silva, C., G. Sellés, R. Ferreyra y H. Silva, 2012. Variation of water potential and trunk diameter answer as sensitivity to the water availability in table grapes. Chil. J. Agric. Res. 72(4), 459-469. Doi: 10.4067/S0718-58392012000400001

Steppe, K., D. De Pauw, T. Doody y R. Teskey. 2010. A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteor. 150(7), 1046-1056. Doi: 10.1016/j.agrformet.2010.04.004

Steppe, K., D. De Pauw, R. Lemeur y P. Vanrolleghem. 2005. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiol. 26, 257-273. Doi: 10.1093/treephys/26.3.257

Vandegehuchte, M., A. Guyot, M. Hubeau, T. De Swaef, D. Lockington y K. Steppe. 2014. Modelling reveals endogenous osmotic adaptation of storage tissuewater potential as an important driver determining different stem diameter variation patterns in the mangrove species Avicennia marina and Rhizophora stylosa. Ann. Bot. 114, 667-676. Doi: 10.1093/aob/mct311

Verbeeck, H., K. Steppe, N. Nadezhdina, M. De Beeck, G. Deckmyn, L. Meiresonne y I. Janssens. 2007. Model analysis of the effects of atmospheric drivers on storage water use in Scots pine. Biogeosci. 4(4), 657-671. 10.5194/bg-4-657-2007

Zegbe, J., M. Behboudian y B. Clothier. 2006. Responses of ‘Petopride’processing tomato to partial rootzone drying at different phenological stages. Irrig. Sci. 24(3), 203-210. Doi: 10.1007/s00271-005-0018-4

Zhang, D., Q. Du, Z. Zhang, X. Jiao, X. Song y J. Li. 2017. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer. Scient. Rep. 7, srep43461.

Zhu, X., S. Long y D. Ort. 2010. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235-261. Doi: 10.1146/annurev-arplant-042809-112206


Download data is not yet available.