Efecto de la salinidad en el crecimiento de plantas de tomate tipo chonto

Contenido principal del artículo

Autores

Tatiana M. Saldaña http://orcid.org/0000-0001-9784-7846
Carlos A. Bejarano http://orcid.org/0000-0002-0973-8381
Shirley Guaqueta http://orcid.org/0000-0001-6374-8700

Resumen

El estrés por salinidad es una limitante importante en la agricultura, debido a que reduce los rendimientos de los cultivos y daña los sustratos por la acumulación de sal. En este trabajo se evaluó el efecto de cuatro concentraciones de NaCl (0, 50, 100 y 150 mg L-1) sobre el crecimiento de dos híbridos de tomate tipo chonto, Aslam y Calima, a través de un análisis de crecimiento bajo condiciones de invernadero. Se midió el peso seco de cada órgano de la planta y el área foliar, de donde se determinaron la tasa relativa de crecimiento, la tasa de asimilación neta (TAN), la tasa absoluta de crecimiento (TAC), la relación área foliar, relación peso fresco y área foliar específica. El modelo que mejor representó el crecimiento de los híbridos fue un polinomio de tercer orden. ‘Calima’ acumuló mayor área foliar y mayor cantidad de biomasa en hojas, tallos y flores. Mientras que, ‘Aslam’ acumuló más biomasa en frutos y mantuvo un crecimiento independiente del tratamiento y, además, fue quien presentó la máxima velocidad de incremento de materia seca. Por su parte, ‘Calima’ presentó valores iguales a 0 g cm-2 d-1 en su TAN, lo que representa una tasa respiratoria de mantenimiento más alta que la tasa fotosintética. Respecto a la TAC, no hay diferencia en la velocidad de crecimiento entre los híbridos.

Palabras clave:

Detalles del artículo

Referencias

Baracaldo, A., R. Carvajal, A. Romero, A. Prieto, F. García, G. Fischer y D. Miranda. 2014. Waterlogging affects the growth and biomass production of chonto tomatoes (Solanum lycopersicum L.), cultivated under shading. Rev. Colomb. Cienc. Hortic. 8(1), 92-102. Doi: https://doi.org/10.17584/rcch.2014v8i1.2803

Barraza, F., G. Fischer y C. Cardona. 2004. Studying the process of tomato crop (Lycopersicon esculentum Mill.) growth in the middle Sinu Valley, Colombia. Agron. Colomb. 22(1), 81-90.

Casierra, F., J. Arias y C. Pachón. 2013. Effect of salinty caused by NaCl on hybrid tomato plants (Lycopersicon esculentum Miller). Orinoquia 17, 23-29. Doi: https://doi.org/10.22579/20112629.38

Chinnusamy, V., A. Jagendorf y J. Kang. 2005. Understanding and improving salt tolerance in plants. Crop Sci. 45(2), 437-448. Doi: https://doi.org/10.2135/cropsci2005.0437

Coca, A., C. Carranza, D. Miranda y M. Rodríguez. 2012. NaCl effects on growth, yield and quality parameters in the onion (Allium cepa L.) under controlled conditions. Rev. Colomb. Cienc. Hortic. 6(2), 196–212. Doi: https://doi.org/10.17584/rcch.2012v6i2.1977

De Oliveira, A., J. Domingos y S. Zambelo. 2000. Análise de crescimento na cultura da Batata submetida a diferentes lâminas de irrigação. Pesq. Agropec. Bras. 35(5), 901-907.

Fita, A., A. Rodríguez, M. Boscaiu, J. Prohens y O. Vicente. 2015. Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Front. Plant Sci. 6, 1–14. Doi: https://doi.org/10.3389/fpls.2015.00978

Ghazi, N. y A. Karaki. 2000. Growth, sodium, and potassium uptake and translocation in salt stressed tomato. J. Plant Nut. 23(3), 369-79. Doi: https://doi.org/10.1080/01904160009382023

Goykovic, V. y G. Saavedra Del Real. 2007. Some effects of salinity on the tomato cultivars and agronomic in its managing. Idesia 25(3), 47-58. Doi: https://doi.org/10.4067/S0718-34292007000300006

Hu, Y. y U. Schmidhalter. 2005. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nut. Soil Sci. 168(4), 541-549. Doi: https://doi.org/10.1002/jpln.200420516

Hunt, R. 1982. Plant growth curves: The functional approach to plant growth analysis. Cambridge University Press, New York, USA.

Hunt, R. 2002. A modern tool for classical plant growth analysis. Ann. Bot. 90(4), 485-488. Doi: https://doi.org/10.1093/aob/mcf214

Jaramillo, J., V.P. Rodriguez, M. Guzmán y M.A. Zapata 2006. El cultivo de tomate bajo invernadero (Lycopersicon esculentum Mill.). Boletín Técnico 21. Corpoica, Centro de Investigación La Selva, Rionegro, Antioquia, Colombia.

Karakas, S., M.A. Cullu, C. Kaya y M. Dikilitas. 2016. Halophytic companion plants improve growth and physiological parameters of tomato plants grown under salinity. Pak. J. Bot. 48(1), 21-28.

Lesmes, R., A. Molano, D. Miranda y B. Chaves. 2007. Evaluation of salt (NaCl) concentrations in irrigation water on lettuce (Lactuca sativa L.) ‘Batavia’ growth. Rev. Colomb. Cienc. Hort. 1(2), 222-235. Doi: https://doi.org/10.17584/rcch.2007v1i2.1163

McCall, D. y A. Brazaityte. 1997. Salinity effects on seedling growth and floral initiation in the tomato. Acta Agr. Scand. B. S. P. 47(4), 248-252. Doi: https://doi.org/10.1080/09064719709362468

Pérez, F., M. Balibrea, A. Santa Cruz y M. Estañ. 1996. Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil 180(2), 251-57. Doi: https://doi.org/10.1007/BF00015308

Saldaña, T., J. Patiño y J. Cotes. 2015. Biomass distribution and allocation in diploid potato varieties (Solanum phureja Juz. et Buk.). Agron. Colomb. 33(3), 322-329. Doi: https://doi.org/10.15446/agron.colomb.v33n3.50237

Tanwar, B. 1996. Saline water management for rrigation. Agric. Water Manag. 30(1), 1-24. Doi: https://doi.org/10.1016/0378-3774(95)01211-7

Tester, M. y R. Davenport. 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91(5), 503-527. Doi: https://doi.org/10.1093/aob/mcg058

Yokoi, S., R.A. Bressan y P.M. Hasegawa. 2002. Salt stress tolerance of plants. JIRCAS Work. Rep. 25-33.

Descargas

La descarga de datos todavía no está disponible.