Efecto de cuatro inhibidores de etileno en la maduración del fruto de café (Coffea arabica L.) durante precosecha

Contenido principal del artículo

Autores

Carlos Andrés Unigarro https://orcid.org/0000-0002-7344-3211
Claudia Patricia Flórez https://orcid.org/0000-0003-2859-3496
Carlos Eugenio Oliveros https://orcid.org/0000-0002-6432-2557
Myriam Cañón https://orcid.org/0000-0001-7584-0790

Resumen

En el proceso natural de maduración de los frutos climatéricos, se puede modificar e intervenir los mecanismos de acción del etileno durante precosecha y poscosecha. En algunos frutos los inhibidores del etileno han permitido retardar su desarrollo. En esta investigación se evaluó el efecto de cuatro inhibidores de etileno en el desarrollo de frutos de café durante precosecha. En la Estación Experimental Paraguaicito de Cenicafé (04°23´ N y 75°44´ W, Quindío, Colombia) en un cultivo de café variedad Castillo® Paraguaicito, se instalaron bajo un diseño de bloques completos al azar 13 tratamientos correspondientes a cuatro inhibidores de etileno que fueron acetato de potasio (0,5; 1,0 y 2,0% P/V), ácido aminooxiacético (1, 5 y 10 mg L-1), ácido salicílico (1, 5 y 10 mM) y aminoetoxi-vinil-glicina (25, 50 y 100 μg L-1) en tres diferentes dosis, además de un testigo absoluto. Los inhibidores se aplicaron 1 semana antes del pico de cosecha y 4 semanas después. Se evaluaron las variables producción de café cereza, peso de un fruto, frutos caídos y el porcentaje de frutos inmaduros, pintones, maduros y sobremaduros. Esto se realizó en la cosecha principal de 2016 y la cosecha secundaria de 2017. En la cosecha principal, los tratamientos aminoetoxi-vinil-glicina (100 μg L-1) y ácido salicílico (1 mM) retardaron el proceso de maduración al reducir entre 16,0 y 16,6% el porcentaje de frutos sobremaduros y aumentar entre 12,8 y 14,3% el porcentaje de frutos maduros, respecto al testigo absoluto. En la cosecha secundaria, los tratamientos y el testigo no difirieron significativamente en ninguna de las variables evaluadas.

Palabras clave:

Detalles del artículo

Referencias

Abeles, F.B., P.W. Morgan y M.E. Saltveit. 1992. Ethylene in plant biology. Academic Press, San Diego, CA.

Arcila, J. 1975. Efecto del ethephon en la calidad de la bebida del café. Rev. Cenicafé 26(1), 49-52.

Arcila, J., L. Buhr, H. Bleiholder, H. Hack, U. Meier y H. Wicke. 2002. Application of the extended BBCH scale for the description of the growth stages of coffee (Coffea spp.). Ann. Appl. Biol. 141(1), 19-27. Doi: 10.1111/j.1744-7348.2002.tb00191.x

Arora, A. 2008. Biochemistry of flower senescence. pp. 51-85. En: Paliyath, G., D. Murr., A. Handa y S. Lurie (eds.). Postharvest biology and technology of fruits, vegetables, and flowers. Wiley-Blackwell Publishing, New Delhi, India.

Balaguera, H.E., F.A. Salamanca, J.C. García y A. Herrera. 2014. Etileno y retardantes de la maduración en la poscosecha de productos agrícolas. Una revisión. Rev. Colomb. Cienc. Hortic. 8(2), 302-313. Doi: 10.17584/rcch.2014v8i2.3222

Berlanga-Reyes, D.I., V.M. Guerrero-Prieto y J.J. Ornelas-Paz. 2011. Productos alternativos a la aminoetoxivinilglicina para el control de la producción de etileno en manzana 'Golden Delicious'. Tecnociencia 5(2), 83-89.

Burns, J.K. 2008. 1-Methylcyclopropene applications in preharvest systems: focus on citrus. Hortscience 43(1), 112-114.

Camayo, G.C., B. Chaves, J. Arcila y A. Jaramillo. 2003. Desarrollo floral del cafeto y su relación con las condiciones climáticas de Chinchiná-Caldas. Rev. Cenicafé 54(1), 35-49.

Champa, W.H., M.I.S. Gill, B.V.C. Mahajan y N.K. Arora. 2015. Preharvest salicylic acid treatments to improve quality and postharvest life of table grapes (Vitis vinifera L.) cv. Flame Seedless. J. Food Sci. Technol. 52(6), 3607-3616. Doi: 10.1007/s13197-014-1422-7

Dal Cin, V., M. Danesin, A. Botton, A. Boschetti, A. Dorigoni y A. Ramina. 2008. Ethylene and preharvest drop: the effect of AVG and NAA on fruit abscission in apple (Malus domestica L. Borkh). Plant Growth Reg. 56, 317-325. Doi: 10.1007/s10725-008-9312-5

DaMatta, F.M., C.P. Ronchi, M. Maestri y R.S. Barros. 2007. Ecophysiology of coffee growth and production. Braz. J. Plant Physiol. 19(4), 485-510. Doi: 10.1590/S1677-04202007000400014

Davies, C. y C. Böttcher. 2014. Other hormonal signals during ripening. pp. 202-216. En: Nath, P., M. Bouzayen, A.K. Mattoo y J.C. Pech. (eds.). Fruit ripening: physiology, signalling and genomics. CABI, Oxfordshire, UK. Doi: 10.1079/9781845939625.0048

Davis, A.P., J. Tosh, N. Ruch y M.F. Fay. 2011. Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of Coffea. Bot. J. Linn. Soc. 167(4), 357-377. Doi: 10.1111/j.1095-8339.2011.01177.x

Dias, R.E.B.A., F.M. da Silva, J.P. Cunha, R.C. Avelar y F.C. Fernandes. 2014. Eficiência da colheita mecanizada do café com uso do inibidor de biossíntese de etileno. Coffee Sci. 9(4), 527-536. Doi: 10.25186/cs.v9i4.746

Giovannoni, J.J. 2004. Genetic regulation of fruit development and ripening. The plant cell 16(suppl 1), S170-S180. Doi: 10.1105/tpc.019158

Greene, D.W. 2005. Time of aminoethoxyvinylglycine application influences preharvest drop and fruit quality of ‘McIntosh’ apples. Hortscience 40(7), 2056-2060.

Guo, H. y J.R. Ecker. 2004. The ethylene signaling pathway: new insights. Curr Opin Plant Biol. 7(1), 40-49. Doi: 10.1016/j.pbi.2003.11.011

ICO (International Coffee Organization). 2017. Trade statistics tables. En: http://www.ico.org/trade_statistics.asp?section=Statistics; consulta: Septiembre de 2017.

Karlidag, H., E. Yildirim y M. Turan. 2009. Exogenous applications of salicylic acid affect quality and yield of strawberry grown under antifrost heated greenhouse conditions. J. Plant Nutr. Soil Sci. 172(2), 270-276. Doi: 10.1002/jpln.200800058

Kesari, R., P. Trivedi y P. Nath. 2007. Ethylene-induced ripening in banana evokes expression of defense and stress related genes in fruit tissue. Postharvest Biol. Technol. 46(2), 136-143. Doi: 10.1016/j.postharvbio.2007.04.010

Kraeva, E., C. Andary, A. Carbonneau y A. Deloire. 1998. Salicylic acid treatment of grape berries retards ripening. Vitis 37(3), 143-144.

Lelièvre, J.M., A. Latchè, B. Jones, M. Bouzayen y J.C. Pech. 1997. Ethylene and fruit ripening. Physiol. Plant. 101(4), 727-739. Doi: 10.1111/j.1399-3054.1997.tb01057.x

Leslie, C.A. y R.J. Romani. 1988. Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol. 88, 833-837. Doi: 10.1104/pp.88.3.833

Marín, S.M., J. Arcila, E.C. Montoya y C.E. Oliveros. 2003. Relación entre el estado de madurez del fruto del café y las características de beneficio, rendimiento y calidad de la bebida. Rev. Cenicafé 54(4), 297-315.

Pereira, L.F.P., R.M. Galvao, A.K. Kobayashi, S.M.B. Cação y V.L.G. Esteves. 2005. Ethylene production and acc oxidase gene expression during fruit ripening of Coffea arabica L. Braz. J. Plant Physiol. 17(3), 283-289. Doi: 10.1590/S1677-04202005000300002

Pezzopane, J.R.M., T.D.J.G. Salva, V.B. de Lima y L.C. Fazuoli. 2012. Agrometeorological parameters for prediction of the maturation period of Arabica coffee cultivars. Int. J. Biometeorol. 56(5), 843-851. Doi: 10.1007/s00484-011-0486-6

Puerta, G.I. 2000. Influencia de los granos de café cosechados verdes, en la calidad física y organoléptica de la bebida. Rev. Cenicafé 51(2), 136-150.

Ságio, S.A., A.A. Lima, H.G. Barreto, C.H.S. de Carvalho, L.V. Paiva y A. Chalfun-Junior. 2013. Physiological and molecular analyses of early and late Coffea arabica cultivars at different stages of fruit ripening. Acta Physiol. Plant. 35(11), 3091-3098. Doi: 10.1007/s11738-013-1342-6

Saltveit, M.E. 1999. Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biol. Technol. 15(3), 279-292. Doi: 10.1016/S0925-5214(98)00091-X

SAS Institute. 2012. The SAS system for Windows. Release 9.4. Cary, NC.

Serek, M., E.J. Woltering, E.C. Sisler, S. Frello y S. Sriskandarajah. 2006. Controlling ethylene responses in flowers at the receptor level. Biotechnol. Adv. 24(4), 368-381. Doi: 10.1016/j.biotechadv.2006.01.007

Silva, R.A., S.N. Matsumoto, G. Marques, P.N. de Oliveira y L.S. de Oliveira. 2013. Efeito do Mathury® na maturação de frutos de café variedade Catuaí Vermelho. Cascavel 6(3), 66-74.

Srivastava, K.M. y U.N. Dwivedi. 2000. Delayed ripening of banana fruit by salicylic acid. Plant Sci. 158(1), 87-96. Doi: 10.1016/S0168-9452(00)00304-6

Stroup, W.W. 2015. Rethinking the analysis of non-normal data in plant and soil science. Agron. J. 107(2), 811-827. Doi: 10.2134/agronj2013.0342

Upegui, G. y G. Valencia. 1972. Anticipación de la maduración de la cosecha de café, con aplicaciones de Ethrel. Rev. Cenicafé 23(1), 19-26.

Wang, Y.Y., B.Q. Li, G.Z. Qin, L. Li y S.P. Tian. 2011. Defense response of tomato fruit at different maturity stages to salicylic acid and ethephon. Sci. Hortic. 129(2), 183-188. Doi: 10.1016/j.scienta.2011.03.021

Wills, R. y M. Warton. 2004. Efficacy of potassium permanganate impregnated into alumina beads to reduce atmospheric ethylene. J. Am. Soc. Hortic. Sci. 129(3), 433-438.

Winston, E.C., M. Hoult, C.J. Howitt y R.K. Shepherd. 1992. Ethylene-induced fruit ripening in arabica coffee (Coffea arabica L.). Aust. J. Exp. Agr. 32(3), 401-408. Doi: 10.1071/EA9920401

Yildiz, K., B. Ozturk e Y. Ozkan. 2012. Effects of aminoethoxyvinylglycine (AVG) on preharvest fruit drop, fruit maturity, and quality of ‘Red Chief’ apple. Sci. Hort. 144, 121-124. Doi: 10.1016/j.scienta.2012.07.005

Descargas

La descarga de datos todavía no está disponible.