Skip to main navigation menu Skip to main content Skip to site footer

Damage levels caused by Capulinia linarosae Kondo & Gullan (Hemiptera: Eriococcidae) on guava crops under two agronomic management practices in the south of Lake Maracaibo, Venezuela

Young colony of Capulinia linarosae on a principal guava stem, Agropecuaria Aranzazu, El Moralito, State of Zulia, Venezuela.  Photo: J.F. Redondo-Méndez

Abstract

The objective of the present study was to test the hypothesis of no difference in the level of damage caused by the guava cottony scale Capulinia linarosae (Hemiptera: Eriococcidae) in two guava crops under different agronomic management practices; a crop with organic management practices (PUA) was compared with another subjected to chemical methods (PUB). Forty plants on each farm were selected randomly to estimate damage on the stems, branches, leaves, and fruits. The levels of damage were statistically different (P<0.0001) between the methods for the stems and branches but not for the leaves or fruits (P>0.05). It was concluded that the magnitude of damage was greater in the crop under chemical control and that agronomic management was a critical factor. Excess insecticides and incorrect pruning applications cause damage to plant bark and favor insect proliferation. While the use of a sulfur-calcium broth in PUA regulated pH, it favored the effect of other products and promoted the growth of green algae, which covered bark crevices and inhibited cottony scale establishment. The excessive use of agrochemicals for weed control in PUB caused soil nudity and killed natural enemies, whereas, in PUA, the grass layer was clipped at 20 cm from the soil, maintaining moisture and creating a favorable habitat for natural enemies.

Keywords

Control methods, Psidium guajava, Cottony scale, Alternative agriculture, Integrated pest management

PDF

References

  1. Altieri, M.A. and C.I. Nicholls. 2003. Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil Till. Res. 72, 203-211. Doi: https://doi.org/10.1016/S0167-1987(03)00089-8
  2. Aular, J. and M. Casares. 2011. Consideraciones sobre la producción de frutas en Venezuela. Rev. Bras. Frutic. 33, 187-198. Doi: https://doi.org/10.1590/S0100-29452011000500022
  3. Camacho, J., P. Güerere, and M. Quiroz. 2002. Insectos y ácaros del guayabo (Psidium guajaba L.) en plantaciones comerciales del estado Zulia, Venezuela. Rev. Fac. Agron. (LUZ) 19, 140-148.
  4. Cermeli, M. and F. Geraud-Pouey. 1997. Capulinia sp., cercana a Jaboticabae Von Ihering (Hemiptera: Coccoidea, Eriococcidae) nueva plaga del guayabo en Venezuela. Agron. Trop. (1), 125-126.
  5. Chirinos, D. and F. Geraud-Pouey. 2011. Manejo de plagas agrícolas en Venezuela. Análisis y reflexiones sobre algunos casos. Interciencia 36(3), 192-199.
  6. Chirinos, D., F. Geraud-Pouey, L. Bastidas, M. García, and Y. Sánchez. 2007. Efecto de algunos insecticidas sobre la mota blanca de guayabo, Capulinia sp. (Hemiptera: Eriococcidae). Interciencia 8, 547-553.
  7. Chirinos, D., F. Geraud-Pouey, and G. Romay. 2004. Desarrollo y reproducción de Capulinia sp. cercana a jaboticabae Von Ihering (Hemiptera: Eriococcidae) sobre guayabo. Entomotropica 19(3), 135-142.
  8. Chirinos, D.T. and T. Kondo. 2019. Description and biological studies of a new species of Metaphycus Mercet, 1917 (Hymenoptera: Encyrtidae), a parasitoid of Capulinia linarosae Kondo & Gullan. Int. J. Ins. Sci. 11, 1-9. Doi: https://doi.org/10.1177/1179543319857962
  9. Devine, G., D. Eza, E. Ogusuku, and M. Furlong. 2008. Uso de insecticidas: contexto y consecuencias ecológicas. Rev. Peru. Med. Exp. Salud Publica 25, 74-100.
  10. Ettiene, G., P. García, R. Bauza, L. Sandoval, and D. Medina. 2010. Persistencia del insecticida clorpyrifos en hojas y tallos de guayabo (Psidium guajava L.). Rev. Cient. UDO Agric. 10, 36-47.
  11. Ewel, J., A. Madriz, and J.A. Tosi. Jr. 1976. Zonas de vida de Venezuela. Memoria explicativa sobre el mapa ecológico. Ministerio de Agricultura y Cría, Fondo Nacional de Investigaciones Agropecuarias; Editorial Sucre, Caracas.
  12. García, M. 2009. Guía técnica del cultivo de la guayaba Centro Nacional de Tecnología Agropecuaria y Forestal “Enrique Álvarez Córdoba”, Ciudad Arce, Salvador.
  13. Garrat, M.P., D.J. Wright, and S.R. Leather. 2011. The effects of farming system and fertilizers on pests and natural enemies: A synthesis of current research. Agr. Ecosyst. Env. 141, 261-270. Doi: https://doi.org/10.1016/j.agee.2011.03.014
  14. Geraud-Pouey, F., D. Chirinos, R. Aguirre, Y. Bravo, and J. Quintero. 2001a. Evaluación de Metaphycus sp. (Hymenoptera: Encyrtidae) como agente de control natural de Capulinia sp. cercana a jaboticabae Von Ihering (Hemiptera: Eriococcidae). Entomotropica 16(3), 165-171.
  15. Geraud-Pouey, F., D. Chirinos, and G. Romay. 2001b. Efecto físico de las exfoliaciones de la corteza del guayabo (Psidium guajava) sobre Capulinia sp. cercana a jaboticabae Von Ihering (Hemiptera: Eriococcidae). Entomotropica 16(1), 21-27.
  16. Godhani, P.H., R.M. Patel, J.J. Jani, D.N. Yadav, D.M. Korat, and B.H. Patel. 2009. Impact of habitat manipulation of insect pests and their natural enemies in hybrid cotton. Karnataka J. Agr. Sci. 22, 104-107.
  17. Grogan, K. 2014. When ignorance is not bliss: Pest control decisions involving beneficial insects. Ecol. Econ. 107, 104-113. Doi: https://doi.org/10.1016/j.ecolecon.2014.08.007
  18. Güerere, P. and M. Quiroz. 2000. Escalas cualitativas del daño hecho por el ácaro plano, Brevipalpus phoenicis (Geijskes) (Tenuipalpidae), a frutos del guayabo (Psidium guajava L.). Rev. Fac. Agron. (LUZ) 17(6), 474-475.
  19. Hodgson, C. and D. Miller. 2010. A review of the Eriococcid Genera (Hemiptera: Sternorrhinchia: Coccoidea) of South America. Zootaxa 2459(1), 1-101. Doi: https://doi.org/10.11646/zootaxa.2459.1.1
  20. Kondo, T., Gullan, P.J., and L.G. Cook. 2016. A review of the genus Capulinia Signoret (Hemiptera: Coccoidea: Eriococcidae) with description of two new species. Zootaxa 4111(4), 471-491. Doi: https://doi.org/10.11646/zootaxa.4111.4.7
  21. Lavelle, P., M. Blouin, J. Boyer, P. Cadet, D. Laffray, A.T. Pham-Thi, G. Reversata, W. Settle, and Y. Zuily. 2004. Plant parasite control and soil fauna diversity. Compt. Rend. Biol. 327, 629-638. Doi: https://doi.org/10.1016/j.crvi.2004.05.004
  22. León, L.A., C.J. Morán, R.D. Ruiz, and W.A. Rojas. 2014. Utilización de un sistema de georeferenciación para el monitoreo fitopatológico en guayaba del Municipio Baralt, estado Zulia. p. 93. In: Resúmenes, XII Congreso Venezolano de Fruticultura. San Felipe, Venezuela.
  23. Mates, S.G., I. Perfecto, and C. Badgley. 2012. Parasitoid wasp diversity in Apple orchards along a pest management gradient. Agri. Ecosyst. Env. 156, 82-88. Doi: https://doi.org/10.1016/j.agee.2012.04.016
  24. Mendes, F., U. Muhamma, A. Newton, J. Costa, O. Ranny, and S. Willemse. 2017. Advances in guava propagation. Rev. Bras. Frutic. 39(4), 1-24. Doi: https://doi.org/10.1590/0100-29452017358
  25. Minh, L. and K.L. Heong. 2005. Effects of organic fertilizers on insect pest and diseases of rice. Omonrice 13, 26-33.
  26. Monteiro, L.B., C. Lavigne, B. Ricci, O. Franck, J.F. Toubon, and B. Sauphanor. 2013. Predation of codling moth eggs is affected by pest management practices at orchard and landscape levels. Agric. Ecosyst. Env. 166, 86-93. Doi: https://doi.org/10.1016/j.agee.2011.10.012
  27. Ndolo, D. 2004. Effects of agronomic practices on the incidence of sorghum shoot fly (Atherigona soccata) and grain yield of sorghum (Sorghum bicolor). MSc thesis. Egerton University, Egerton, UK.
  28. Oso, A.A. and M.J. Falade. 2010. Effects of Variety and spatial arrangement on pests incidence, damage and subsequent yield of Cowpea in a Cowpea/Maize intercrop. World J. Agr. Sci. 6, 274-276.
  29. Potgieter, L., J.H. van Vuuren, and D.E. Conlong. 2015. The role of heterogeneous agricultural landscapes in the suppression of pest species following random walk dispersal patterns. Ecol. Model. 306, 240-246. Doi: https://doi.org/10.1016/j.ecolmodel.2014.11.029
  30. Poveda, K., M.A. Gómez, and E. Martínez. 2008. Diversification practices: their effect on pest regulation and production. Rev. Colomb. Entom. 34, 131-144.
  31. Quijada, O. and J. Matheus. 1997. Factores determinantes en los precios de la guayaba en la planicie de Maracaibo. FONAIAP Divulga 57, 10-13.
  32. Reddy, Mr. 2016. Guava cultivation information guide. In: Asia Farming, https://www.asiafarming.com/guava-cultivation; consulted: June 2018.
  33. Rusch, A., M. Valantin-Morison, J. Sarthou, and J. Roger-Estrade. 2010. Biological control of insect pests in agroecosystems: effects of crop management, farming systems, and seminatural habitats at the landscape scale: a review. Adv. Agron. 109, 219-259. Doi: https://doi.org/10.1016/B978-0-12-385040-9.00006-2
  34. Rush, A., M. Valantin-Morison, J.P. Sarthou, and J. Roger-Estrade. 2013. Effect of crop management and landscape context on insect pest populations and crop damage. Agric. Ecosyst. Manag. 166, 118-125. Doi: https://doi.org/10.1016/j.agee.2011.05.004
  35. Seijas, A.E. 1984. Estudio faunístico preliminar de la Reserva de Fauna Silvestre de las Ciénagas de Juan Manuel Aguas Blancas y Aguas Negras Estado Zulia. Serie Informes Técnicos DGSIIA/IT/147. Ministerio del Ambiente y de los Recursos Naturales Renovables, Caracas.
  36. Silva, R., H. Carmo, V. Vilas-Boas, D.J. Barbosa, M. Monteiro, P. Guedes de Pinho, M de L. Bastos, and F. Remião. 2015. Several transport systems contribute to the intestinal uptake of Paraquat, modulating its cytotoxic effects. Toxicol. Lett. 232, 271-283. Doi: https://doi.org/10.1016/j.toxlet.2014.10.015
  37. Singh, B., J.S. Kular, H. Ram, and M.S. Mahal. 2014. Relative abundance and damage of some insect pests of wheat under different tillage practices in rice-wheat cropping in India. Crop Prot. 61, 16-22. Doi: https://doi.org/10.1016/j.cropro.2014.03.005
  38. Veromann, E., M. Toome, A. Kannaste, R. Kaasik, L. Copolvici, J. Flink, G. Kovács, L. Arits, A. Luik, and U. Niinemets. 2013. Effects of nitrogen fertilization on insect pests, their parasitoids, plant diseases and volatile organic compounds in Brassica napus. Crop Prot. 43, 79-88. Doi: https://doi.org/10.1016/j.cropro.2012.09.001

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.