Fitting a logistic growth model to yield traits in lettuce cultivars growing in summer

Ajuste del modelo logístico para caracteres productivos de cultivares de lechuga en condiciones de verano

Main Article Content

Fernanda Carini
Alberto Cargnelutti Filho
Jéssica Maronez de Souza
Rafael Vieira Pezzini
Cassiane Ubessi
Márcio André Kreutz

Abstract

The objective of this study was to fit a logistic model to leaf fresh and dry matter and shoot fresh and dry matter in four lettuce cultivars to describe growth in summer. The cultivars Crocantela, Elisa, Rubinela, and Vera were evaluated in the summers of 2017 and 2018 in soil in a protected environment and in a soilless system. Seven days after transplanting, the leaf fresh and dry matter and shoot fresh and dry matter of 8 plants were weighed every 4 days. The model parameters were estimated using R software with the least squares method and iterative process of Gauss-Newton. This study also estimated the confidence intervals of the parameters, verified the assumptions of the models, calculated the goodness-of-fit measures and the critical points, and quantified the parametric and intrinsic nonlinearities. The logistic growth model fit well to the fresh and dry matter in the leaves and shoots in the cultivars Crocantela, Elisa, Rubinela, and Vera and described the growth of lettuce.

Keywords:

Downloads

Download data is not yet available.

Article Details

References (SEE)

Alvares, C.A., J.L. Stape, P.C. Sentelhas, J.L.M. Gonçalves, and G. Sparovek. 2013. Köppen’s climate classification map for Brazil. Meteorol. Z. 22, 711-728. Doi: https://doi.org/10.1127/0941-2948/2013/0507

Andriolo, J.L. 2017. Olericultura geral. 3a ed. UFSM, Santa Maria, Brazil.

Archontoulis, S.V. and F.E. Miguez. 2015. Nonlinear regression models and applications in agricultural research. Agron. J. 107, 786-798. Doi: https://doi.org/10.2134/agronj2012.0506

Arnold, C.T. 1959. The determination and significance of the base temperature in a linear heat unit system. Proc. Am. Soc Hort Sci. 74, 430-455.

Bates, D.M. and D.G. Watts. 1998. Nonlinear regression analysis and its applications. John Wiley & Sons, New York, NY.

Batista, E.L.S., S. Zolnier, A. Ribeiro, G.B. Lyra, T. G.F. Silva, and D. Boehringer. 2013 Modelagem do crescimento de cultivares de cana-de-açúcar no período de formação da cultura. Rev. Bras. Eng. Agr. Amb. 17, 1080-1087. Doi: https://doi.org/10.1590/S1415-43662013001000009

Bem, C.M., A. Cargnelutti Filho, G. Facco, D.E. Schabarum, D.L. Silveira, , F.M. Simões, and D.B. Uliana. 2017. Growth models for morphological traits of sunn hemp. Semina: Cienc. Agrár. 38, 2933-2944. Doi: https://doi.org/10.5433/1679-0359.2017v38n5p2933

Brunini, O. 1976. Temperatura-base para alface cultivar "white boston", em um sistema de unidades térmicas. Bragantia 35, 213-219. Doi: https://doi.org/10.1590/S0006-87051976000100019

Carini, F., A. Cargenelutti Filho, C.T. Bandeira, I.M.M. Neu, R.V. Pezzini, M. Pacheco, and R.M. Tomasi. 2019. Growth models for lettuce cultivars growing in spring. J. Agric. Sci. 11, 147-159. Doi: https://doi.org/10.5539/jas.v11n6p147

Carranza, C., O. Lanchero, D. Miranda, and B. Chaves. 2009. Análisis del crecimiento de lechuga (Lactuca sativa L.) ‘Batavia’ cultivada en un suelo salino de la Sabana de Bogotá. Agron. Colomb. 27, 41-48.

Diel, M.I., B.G. Sari, D.K. Krysczun, T. Olivoto, M.V.M. Pinheiro, D. Meira, D. Schmidt, and A.D. Lúcio. 2018. Nonlinear regression for description of strawberry (Fragaria x ananassa) production. J. Hortic. Sci. Biotechnol. 94, 259-273. Doi: https://doi.org/10.1080/14620316.2018.1472045

Gilmore, E.C. and J.S. Rogers. 1958. Heat units as a method of measuring maturity in corn. Agron. J. 50, 611-615. Doi: https://doi.org/10.2134/agronj1958.00021962005000100014x

Lúcio, A.D., L.F. Nunes, and F. Rego. 2015. Nonlinear models to describe production of fruit in Cucurbita pepo and Capiscum annuum. Sci. Hortic. 193, 286-293. Doi: https://doi.org/10.1016/j.scienta.2015.07.021

Lúcio, A.D., B.G. Sari, M. Rodrigues, L.M. Bevilaqua, H.M.G. Voss, D. Copetti, and M. Faé. 2016. Nonlinear models for estimating cherry tomato yield. Cienc. Rural 46, 233-241. Doi: https://doi.org/10.1590/0103-8478cr20150067

Lyra, G.B, S. Zolnier, L.C. Costa, G.C. Sediyama and M.A.N. Sediyama. 2003. Modelos de crescimento para alface (Lactuca sativa L.) cultivada em sistema hidropônico sob condições de casa-de-vegetação. Rev. Bras. Agrometeorol. 11, 69-77.

Maynard, D.N. and G. J. Hochmuth. 2007. Knott’s handbook or vegetable growers. 5th ed. John Wiley e Sons, Hoboken, NJ. Doi: https://doi.org/10.1002/9780470121474

Mischan, M.M. and S.Z. Pinho. 2014 Modelos não lineares: funções assintóticas de crescimento. Cultura Acadêmica, Sao Paulo, Brazil.

Muniz, J.A, M. S. Nascimento, and T.J Fernandes. 2017. Nonlinear models for description of cacao fruit growth with assumption violations. Rev. Caatinga 30, 250-257. Doi: https://doi.org/10.1590/1983-21252017v30n128rc

Ntsoane, L.L.M., P. Soundy, J. Jifon, and D. Sivakumar. 2016. Variety-specific responses of lettuce grown under the different coloured shade nets on phytochemical quality after postharvest storage. J. Hortic. Sci. Biotechnol. 91, 520-528. Doi: https://doi.org/10.1080/14620316.2016.1178080

Pereira, A.A., A.R. Morais, M.S. Scalco, and T.J. Fernandes. 2014. Descrição do crescimento vegetativo do cafeeiro cultivar Rubi MG 1192, utilizando modelos de regressão. Coffee Sci. 9, 266-274.

Pereira, A.A., A.R. Morais, M.S. Scalco, and T.J. Fernandes. 2016. Modelagem do diâmetro de copa do cafeeiro podado cultivado em diferentes densidades e regimes hídricos. Coffee Sci. 11, 495-501.

Pôrto, D.R.Q., A.B. Cecílio Filho, A. May, and J.C. Barbosa. 2006. Acúmulo de macronutrientes pela cebola ‘Optima’ estabelecida por semeadura direta. Hortic. Bras. 24, 470-475. Doi: https://doi.org/10.1590/S0102-05362006000400015

Prado, T.K.L., T.V. Savian, and J.A. Muniz. 2013. Ajuste dos modelos Gompertz e Logístico aos dados de crescimento de frutos de coqueiro anão verde. Cienc. Rural 43, 803-809. Doi: https://doi.org/10.1590/S0103-84782013005000044

Puiatti, G.A., P.R. Cecon, M. Nascimento, M. Puiatti, F.L. Finger, A.R., Silva, and A.C.C. Nascimento. 2013. Análise de agrupamento em seleção de modelos de regressão não lineares para descrever o acúmulo de matéria seca em plantas de alho. Rev. Bras. Biom. 31, 337-351.

R Development Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Reis, R.M., P.R. Cecon, M. Puiatti, F.L. Finger, M. Nascimento, F.F. Silva, A.P.S. Carneiro and A.R. Silva. 2014. Modelos de regressão não linear aplicados a grupos de acessos de alho. Hortic. Bras. 32, 178-183. Doi: https://doi.org/10.1590/S0102-05362014000200010

Ribeiro, T.D., T.V. Savian, T.J. Fernandes, and J.A. Muniz. 2018. The use of the nonlinear models in the growth of pears of ‘Shinseiki’ cultivar. Cienc. Rural 48, 1-7. Doi: https://doi.org/10.1590/0103-8478cr20161097

Sala, C.F. and C.P Costa. 2012. Retrospectiva e tendência da alfacicultura brasileira. Hortic. Bras. 30, 187-194. Doi: https://doi.org/10.1590/S0102-05362012000200002

Sari, B.G., A.D. Lúcio, C.S. Santana, and T.V. Savian. 2019. Describing tomato plant production using growth models. Sci. Hortic. 246, 146-154. Doi: https://doi.org/10.1016/j.scienta.2018.10.044

Terra, M.F., J.A. Muniz, and T. V. Savian. 2010. Ajuste dos modelos Logístico e Gompertz aos dados de crescimento de frutos de tamareira-anã (Phoenix roebelenni O’BRIEN). Magistra 22, 1-7.

Citado por: