Fitting a logistic growth model to yield traits in lettuce cultivars growing in summer
Abstract
The objective of this study was to fit a logistic model to leaf fresh and dry matter and shoot fresh and dry matter in four lettuce cultivars to describe growth in summer. The cultivars Crocantela, Elisa, Rubinela, and Vera were evaluated in the summers of 2017 and 2018 in soil in a protected environment and in a soilless system. Seven days after transplanting, the leaf fresh and dry matter and shoot fresh and dry matter of 8 plants were weighed every 4 days. The model parameters were estimated using R software with the least squares method and iterative process of Gauss-Newton. This study also estimated the confidence intervals of the parameters, verified the assumptions of the models, calculated the goodness-of-fit measures and the critical points, and quantified the parametric and intrinsic nonlinearities. The logistic growth model fit well to the fresh and dry matter in the leaves and shoots in the cultivars Crocantela, Elisa, Rubinela, and Vera and described the growth of lettuce.
Keywords
Lactuca sativa, Plant models, Crop modelling, Non-linear models, Vegetable crop
References
- Alvares, C.A., J.L. Stape, P.C. Sentelhas, J.L.M. Gonçalves, and G. Sparovek. 2013. Köppen’s climate classification map for Brazil. Meteorol. Z. 22, 711-728. Doi: https://doi.org/10.1127/0941-2948/2013/0507
- Andriolo, J.L. 2017. Olericultura geral. 3a ed. UFSM, Santa Maria, Brazil.
- Archontoulis, S.V. and F.E. Miguez. 2015. Nonlinear regression models and applications in agricultural research. Agron. J. 107, 786-798. Doi: https://doi.org/10.2134/agronj2012.0506
- Arnold, C.T. 1959. The determination and significance of the base temperature in a linear heat unit system. Proc. Am. Soc Hort Sci. 74, 430-455.
- Bates, D.M. and D.G. Watts. 1998. Nonlinear regression analysis and its applications. John Wiley & Sons, New York, NY.
- Batista, E.L.S., S. Zolnier, A. Ribeiro, G.B. Lyra, T. G.F. Silva, and D. Boehringer. 2013 Modelagem do crescimento de cultivares de cana-de-açúcar no período de formação da cultura. Rev. Bras. Eng. Agr. Amb. 17, 1080-1087. Doi: https://doi.org/10.1590/S1415-43662013001000009
- Bem, C.M., A. Cargnelutti Filho, G. Facco, D.E. Schabarum, D.L. Silveira, , F.M. Simões, and D.B. Uliana. 2017. Growth models for morphological traits of sunn hemp. Semina: Cienc. Agrár. 38, 2933-2944. Doi: https://doi.org/10.5433/1679-0359.2017v38n5p2933
- Brunini, O. 1976. Temperatura-base para alface cultivar "white boston", em um sistema de unidades térmicas. Bragantia 35, 213-219. Doi: https://doi.org/10.1590/S0006-87051976000100019
- Carini, F., A. Cargenelutti Filho, C.T. Bandeira, I.M.M. Neu, R.V. Pezzini, M. Pacheco, and R.M. Tomasi. 2019. Growth models for lettuce cultivars growing in spring. J. Agric. Sci. 11, 147-159. Doi: https://doi.org/10.5539/jas.v11n6p147
- Carranza, C., O. Lanchero, D. Miranda, and B. Chaves. 2009. Análisis del crecimiento de lechuga (Lactuca sativa L.) ‘Batavia’ cultivada en un suelo salino de la Sabana de Bogotá. Agron. Colomb. 27, 41-48.
- Diel, M.I., B.G. Sari, D.K. Krysczun, T. Olivoto, M.V.M. Pinheiro, D. Meira, D. Schmidt, and A.D. Lúcio. 2018. Nonlinear regression for description of strawberry (Fragaria x ananassa) production. J. Hortic. Sci. Biotechnol. 94, 259-273. Doi: https://doi.org/10.1080/14620316.2018.1472045
- Gilmore, E.C. and J.S. Rogers. 1958. Heat units as a method of measuring maturity in corn. Agron. J. 50, 611-615. Doi: https://doi.org/10.2134/agronj1958.00021962005000100014x
- Lúcio, A.D., L.F. Nunes, and F. Rego. 2015. Nonlinear models to describe production of fruit in Cucurbita pepo and Capiscum annuum. Sci. Hortic. 193, 286-293. Doi: https://doi.org/10.1016/j.scienta.2015.07.021
- Lúcio, A.D., B.G. Sari, M. Rodrigues, L.M. Bevilaqua, H.M.G. Voss, D. Copetti, and M. Faé. 2016. Nonlinear models for estimating cherry tomato yield. Cienc. Rural 46, 233-241. Doi: https://doi.org/10.1590/0103-8478cr20150067
- Lyra, G.B, S. Zolnier, L.C. Costa, G.C. Sediyama and M.A.N. Sediyama. 2003. Modelos de crescimento para alface (Lactuca sativa L.) cultivada em sistema hidropônico sob condições de casa-de-vegetação. Rev. Bras. Agrometeorol. 11, 69-77.
- Maynard, D.N. and G. J. Hochmuth. 2007. Knott’s handbook or vegetable growers. 5th ed. John Wiley e Sons, Hoboken, NJ. Doi: https://doi.org/10.1002/9780470121474
- Mischan, M.M. and S.Z. Pinho. 2014 Modelos não lineares: funções assintóticas de crescimento. Cultura Acadêmica, Sao Paulo, Brazil.
- Muniz, J.A, M. S. Nascimento, and T.J Fernandes. 2017. Nonlinear models for description of cacao fruit growth with assumption violations. Rev. Caatinga 30, 250-257. Doi: https://doi.org/10.1590/1983-21252017v30n128rc
- Ntsoane, L.L.M., P. Soundy, J. Jifon, and D. Sivakumar. 2016. Variety-specific responses of lettuce grown under the different coloured shade nets on phytochemical quality after postharvest storage. J. Hortic. Sci. Biotechnol. 91, 520-528. Doi: https://doi.org/10.1080/14620316.2016.1178080
- Pereira, A.A., A.R. Morais, M.S. Scalco, and T.J. Fernandes. 2014. Descrição do crescimento vegetativo do cafeeiro cultivar Rubi MG 1192, utilizando modelos de regressão. Coffee Sci. 9, 266-274.
- Pereira, A.A., A.R. Morais, M.S. Scalco, and T.J. Fernandes. 2016. Modelagem do diâmetro de copa do cafeeiro podado cultivado em diferentes densidades e regimes hídricos. Coffee Sci. 11, 495-501.
- Pôrto, D.R.Q., A.B. Cecílio Filho, A. May, and J.C. Barbosa. 2006. Acúmulo de macronutrientes pela cebola ‘Optima’ estabelecida por semeadura direta. Hortic. Bras. 24, 470-475. Doi: https://doi.org/10.1590/S0102-05362006000400015
- Prado, T.K.L., T.V. Savian, and J.A. Muniz. 2013. Ajuste dos modelos Gompertz e Logístico aos dados de crescimento de frutos de coqueiro anão verde. Cienc. Rural 43, 803-809. Doi: https://doi.org/10.1590/S0103-84782013005000044
- Puiatti, G.A., P.R. Cecon, M. Nascimento, M. Puiatti, F.L. Finger, A.R., Silva, and A.C.C. Nascimento. 2013. Análise de agrupamento em seleção de modelos de regressão não lineares para descrever o acúmulo de matéria seca em plantas de alho. Rev. Bras. Biom. 31, 337-351.
- R Development Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
- Reis, R.M., P.R. Cecon, M. Puiatti, F.L. Finger, M. Nascimento, F.F. Silva, A.P.S. Carneiro and A.R. Silva. 2014. Modelos de regressão não linear aplicados a grupos de acessos de alho. Hortic. Bras. 32, 178-183. Doi: https://doi.org/10.1590/S0102-05362014000200010
- Ribeiro, T.D., T.V. Savian, T.J. Fernandes, and J.A. Muniz. 2018. The use of the nonlinear models in the growth of pears of ‘Shinseiki’ cultivar. Cienc. Rural 48, 1-7. Doi: https://doi.org/10.1590/0103-8478cr20161097
- Sala, C.F. and C.P Costa. 2012. Retrospectiva e tendência da alfacicultura brasileira. Hortic. Bras. 30, 187-194. Doi: https://doi.org/10.1590/S0102-05362012000200002
- Sari, B.G., A.D. Lúcio, C.S. Santana, and T.V. Savian. 2019. Describing tomato plant production using growth models. Sci. Hortic. 246, 146-154. Doi: https://doi.org/10.1016/j.scienta.2018.10.044
- Terra, M.F., J.A. Muniz, and T. V. Savian. 2010. Ajuste dos modelos Logístico e Gompertz aos dados de crescimento de frutos de tamareira-anã (Phoenix roebelenni O’BRIEN). Magistra 22, 1-7.