Skip to main navigation menu Skip to main content Skip to site footer

Zucchini lineages with levels of resistance to ZYMV and SqMV viruses

Zucchini viruses. Photo: I.F. Beloti

Abstract

Zucchini (Cucurbita pepo L.) is a horticultural plant species of great socioeconomic value in tropical countries such as Colombia and Brazil. The production of zucchini is qualitatively and quantitatively affected by many diseases, especially viruses belonging to the Potyvirus (Zucchini yellow mosaic virus - ZYMV) and Comovirus (Squash mosaic virus - SqMV) groups. The primary strategy to reduce the spread of potentially damaging plant viruses is the development of genotypes with genetic tolerance; however, there are not many zucchini genotypes with multiple tolerance. Therefore, this study evaluated 66 zucchini genotypes to find sources of tolerance to the ZYMV and SqMV viruses. This experiment was conducted in a completely randomized design using genotypes from the germplasm bank of the Federal University of Uberlândia, including the genotypes: Emanuela (common commercial genotype) ‘Tronco Caserta’ (susceptible genotype) and PX 13067051 (resistant genotype). Leaf extracts containing viral particles were used as inoculant, and the distribution of grades of tolerance was recorded at the seedling stage. The lineages UFU-C×UFU-A#18#3;1, UFU-C×UFU-F#19#11;3, UFU-F#4#9;1, and UFU-D×UFU-F#7#21;1 and the Emanuela cultivar are alternatives for the production of new zucchini genotypes or hybrids with tolerance to the viruses ZYMV and SqMV. More severe symptoms were observed, as well as a larger number of susceptible genotypes for the ZYMV virus, indicating that this virus has great potential for causing damage and losses to zucchini crops.

Keywords

Cucurbita pepo, Marrow zucchini, Courgetti, Zucchini yellow mosaic virus, Squash mosaic virus, Genetic tolerance

PDF

References

AGROFIT. 2017. Sistema de Agrotóxicos Fitossanitários. In: http://agrofitagriculturagovbr/agrofit_cons/principal_agrofit_cons; consulted: March, 2019.

Alencar, N.E., A.D.R. Figueira, J.E.M. Almeida, L.B. Santos, and I.R. Nascimento. 2012. Molecular biological identification of detected viruses in cucurbit species from the State of Tocantins. J. Biotechnol. Biodivers. 3, 32-37.

Alencar, N.E., A.R. Figueira H.O. Santos, and P.S.G. Duarte. 2016. Image analysis and physiological quality assessment of seeds produced in pumpkin plants infected with the Squash mosaic virus (SqMV). Res. J. Seed Sci. 9(1), 14-21. Doi: 10.3923/rjss.2016.14.21

Barbosa, G.S., J.A.A. Lima, A.K.Q. Nascimento, F.R. Silva, and R.C.S. Dias. 2017. Sources of resistance in accessions of Cucurbita spp.to virus species from the genus Potyvirus. Rev. Cienc. Agron. 48(4), 725-731. Doi: 10.5935/1806-6690.20170084

Barbosa, G.S., J.A.A. Lima, M.A. Queiróz, R.C.S. Dias, and C.S. Lima. 2016. Identification and effects of mixed infection of Potyvirus isolates with Cucumber mosaic virus in cucurbits. Rev. Caatinga 29(4), 1028-1035. Doi: 10.1590/1983-21252016v29n429rc

Couto, M.R.M., A.D.C. Lúcio, S.J. Lopes, and R.H. Carpes. 2009. Transformações de dados em experimentos com abobrinha italiana em ambiente protegido. Cienc. Rural 39(6), 1701-1707. Doi: 10.1590/S0103-84782009005000110

Cutler, J., J. Langer, S. Von Bargen, O. Acosta-Losada, F. Casierra-Posada, A. Castañeda-Cárdenas, M. Betancourt-Vásquez, W. Cuellar, E. Arvydas-Stasiukynas, and D. Altenbach. 2018. Evaluación preliminar de virus asociados a sistemas productivos de uchuva, gulupa y rosa. Rev. Colomb. Cienc. Hortic. 12(2), 390-396. Doi: 10.17584/rcch.2018v12i2.7799

Finetti-Sialer, M.M., T. Mascia, F. Cillo, C. Vovlas, and D. Gallitelli. 2012. Biological and molecular characterization of a recombinant isolate of Watermelon mosaic virus associated with a watermelon necrotic disease in Italy. Eur. J. Plant Pathol. 132(3), 317-322. Doi: 10.1007/s10658-011-9884-1

Maluf, W.R., W.M. Moura, I.S. Silva, and M. Castelo-Branco. 1986. Screening of Cucurbita spp. accessions for resistance to Watermelon mosaic virus. Rev. Bras. Genet. 9(1), 161-167.

Moura, M.C.C.L., F.M. Zerbini, D.J.H. Silva, and M.A. Queiroz. 2005. Reação de acessos de Cucurbita sp. ao Zucchini yellow mosaic virus (ZYMV). Hort. Bras. 23(2), 206-210. Doi: 10.1590/S0102-05362005000200009

Nogueira, D.W., W.R. Maluf, A.R. Figueira, G.M. Maciel, L.A.A. Gomes, and C.A.T. Benavente. 2011. Combining ability of summer-squash lines with different degrees of parthenocarpy and PRSV-W resistance. Genet. Mol. Biol. 34(4), 616-623. Doi: 10.1590/S1415-47572011005000039

Oliveira, V.B., J.A.A. Lima, C.C. Vale, and W.O. Paiva. 2000. Caracterização biológica e sorológica de isolados de potyvirus obtidos de cucurbitáceas no Nordeste Brasileiro. Fitopatol. Bras. 25(4), 628-636.

Paris, H.S. 2016. Germplasm enhancement of Cucurbita pepo (pumpkin, squash, gourd: Cucurbitaceae): progress and challenges. Euphytica 208(3), 415-438. Doi: 10.1007/s10681-015-1605-y

R Core Team. 2014. R: A language and environment for statistical computing. In: R Foundation for Statistical Computing, http://www.R-project.org/; consulted: March, 2018.

Radwan, D., K. Fayez, S. Mahmoud, A. Hamad, and G. Lu. 2007. Physiological and metabolic changes of Cucurbita pepo leaves in response to Zucchini yellow mosaic virus (ZYMV) infection and salicylic treatments. Plant Physiol. Biochem. 45(6-7), 480-489. Doi: 10.1016/j.plaphy.2007.03.002

Rodríguez, M., N. Niño, J. Cutler, J. Langer, F. Casierra-Posada, D. Miranda, M. Bandte, and C. Büttner. 2016. Certificación de material vegetal sano en Colombia: un análisis crítico de oportunidades y retos para controlar enfermedades ocasionadas por virus. Rev. Colomb. Cienc. Hortic. 10(1), 164-175. Doi: 10.17584/rcch.2016v10i1.4921

Sanfacon, H., T. Iwanami, A.V. Karasev, R.A.A. van Der Vlugt, J. Wellink, T. Wetzel, and T.N. Yoshikawa. 2011. Family Secoviridae. pp. 881-899. In: King, A.M.Q., M.J. Adams, E.B. Carstens, and E.J. Lefkowitz (eds.). Virus taxonomy: classification and nomenclature: Ninth Report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego, CA.

Şevik, M.A. and Y. Toksöz. 2008. Occurrence of Squash mosaic virus (SqMV) infecting pumpkin and squash growing in Samsun, Turkey. J. Turk. Phytopathol. 37(1-3), 15-25.

Silva, F.R., J.A.A. Lima, A.K.Q. Nascimento, and G.S. Barbosa. 2016. Caracterização biológica e sorológica de um isolado de Squash mosaic virus e efeitos da infecção mista com vírus do gênero Potyvirus (22). Rev. Cienc. Agron. 47(1), 195-202. Doi: 10.5935/1806-6690.20160023

Silveira, L.M., M.A. Queiroz, J.A.A. Lima, A.K.Q. Nascimento, and I.S. Lima Neto. 2009. Levantamento sorológico de vírus em espécies de cucurbitáceas na região do submédio São Francisco, Brasil. Trop. Plant Pathol. 34, 123-126. Doi: 10.1590/S1982-56762009000200008

Spadotti, D.M.A., D.T. Wassano, J.A.M. Rezende, L.E.A. Camargo, and A.K. Inoue-Nagata. 2015. Biological and molecular characterization of Brazilian isolates of Zucchini yellow mosaic virus. Sci. Agric. 72, 187-191. Doi: 10.1590/0103-9016-2014-0197

Tavares, A.T., P.P.N. Chaves, R.W.S. Aguiar, M.F. Santos, R.A. Sarmento, and I.R. Nascimento. 2014. Phenotypic response of pumpkin and melon plants to infection by simple isolates of ZYMV and mixed ZYMV+SQMV. J. Biotech. 5(1), 79-87. Doi: 10.20873/jbb.uft.cemaf.v5n1.tavares

Whitaker, T.W. and R.W. Robinson. 1986. Squash breeding. pp. 209-242. In: Bassett, M.J. (ed.). Breeding vegetable crops. AVI Publishing, Westport, CT.

Yakoubi, S., C. Desbiez, H. Fakhfakh, C. Wipf-Scheibel, F. Fabre, M. Pitrat, M. Marrakchi, and H. Lecoq. 2008. Molecular, biological and serological variability of Zucchini yellow mosaic virus in Tunisia. Plant Pathol. 57, 1146-1154. Doi: 10.1111/j.1365-3059.2008.01934.x

Yesil, S. 2019. Some virus diseases of edible seed squash (Cucurbita pepo L.) in Aksaray province, Turkey. Yuzuncu Yil Univ. J. Agric. Sci. 29, 63-71. Doi: 10.29133/yyutbd.476052

Downloads

Download data is not yet available.

Similar Articles

<< < 1 2 3 

You may also start an advanced similarity search for this article.